hex.deeplearning.DeepLearningMojoWriter Maven / Gradle / Ivy
package hex.deeplearning;
import hex.ModelMojoWriter;
import java.io.IOException;
import static water.H2O.technote;
public class DeepLearningMojoWriter extends ModelMojoWriter {
@SuppressWarnings("unused")
public DeepLearningMojoWriter() {}
private DeepLearningModel.DeepLearningParameters _parms;
private DeepLearningModelInfo _model_info;
private DeepLearningModel.DeepLearningModelOutput _output;
public DeepLearningMojoWriter(DeepLearningModel model) {
super(model);
_parms = model.get_params();
_model_info = model.model_info();
_output = model._output;
if (_model_info.isUnstable()) { // do not generate mojo for unstable model
throw new UnsupportedOperationException(technote(4, "Refusing to create a MOJO for an unstable model."));
}
}
@Override
public String mojoVersion() {
return "1.00";
}
@Override
protected void writeModelData() throws IOException {
writekv("mini_batch_size", _parms._mini_batch_size);
writekv("nums", _model_info.data_info._nums);
writekv("cats", _model_info.data_info._cats);
writekv("cat_offsets", _model_info.data_info._catOffsets);
writekv("norm_mul", _model_info.data_info()._normMul);
writekv("norm_sub", _model_info.data_info()._normSub);
writekv("norm_resp_mul", _model_info.data_info._normRespMul);
writekv("norm_resp_sub", _model_info.data_info._normRespSub);
writekv("use_all_factor_levels", _parms._use_all_factor_levels);
writekv("activation", _parms._activation);
writekv("distribution", _parms._distribution);
boolean imputeMeans=_parms._missing_values_handling.equals(DeepLearningModel.DeepLearningParameters.MissingValuesHandling.MeanImputation);
writekv("mean_imputation", imputeMeans);
if (imputeMeans && _model_info.data_info._cats>0) { // only add this if there are categorical columns
writekv("cat_modes", _model_info.data_info.catNAFill());
}
writekv("neural_network_sizes", _model_info.units); // layer 0 is input, last layer is output
// keep track of neuron network sizes, weights and biases. Layer 0 is the output layer. Last layer is output layer
int numberOfWeights = 1+_parms._hidden.length;
double[] all_drop_out_ratios = new double[numberOfWeights];
for (int index = 0; index < numberOfWeights; index++) {
if (index==_parms._hidden.length) { // input layer
all_drop_out_ratios[index]=0.0;
} else {
if (_parms._hidden_dropout_ratios != null) {
all_drop_out_ratios[index]=_parms._hidden_dropout_ratios[index];
} else {
all_drop_out_ratios[index]=0.0;
}
}
//generate hash key to store weights/bias of all layers
writekv("weight_layer"+index, _model_info.get_weights(index).raw());
writekv("bias_layer"+index, _model_info.get_biases(index).raw());
}
writekv("hidden_dropout_ratios", all_drop_out_ratios);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy