hex.schemas.PCAV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.DataInfo;
import hex.pca.PCA;
import hex.pca.PCAModel.PCAParameters;
import water.api.API;
import water.api.schemas3.ModelParametersSchemaV3;
public class PCAV3 extends ModelBuilderSchema {
public static final class PCAParametersV3 extends ModelParametersSchemaV3 {
static public String[] fields = new String[] {
"model_id",
"training_frame",
"validation_frame",
"ignored_columns",
"ignore_const_cols",
"score_each_iteration",
"transform",
"pca_method",
"k",
"max_iterations",
"use_all_factor_levels",
"compute_metrics",
"impute_missing",
"seed",
"max_runtime_secs"
};
@API(help = "Transformation of training data", values = { "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE" }, gridable = true) // TODO: pull out of categorical class
public DataInfo.TransformType transform;
@API(help = "Method for computing PCA (Caution: GLRM is currently experimental and unstable)", values = { "GramSVD", "Power", "Randomized", "GLRM" }) // TODO: pull out of categorical class
public PCAParameters.Method pca_method;
@API(help = "Rank of matrix approximation", required = true, direction = API.Direction.INOUT, gridable = true)
public int k;
@API(help = "Maximum training iterations", direction = API.Direction.INOUT, gridable = true)
public int max_iterations;
@API(help = "RNG seed for initialization", direction = API.Direction.INOUT)
public long seed;
@API(help = "Whether first factor level is included in each categorical expansion", direction = API.Direction.INOUT)
public boolean use_all_factor_levels;
@API(help = "Whether to compute metrics on the training data", direction = API.Direction.INOUT)
public boolean compute_metrics;
@API(help = "Whether to impute missing entries with the column mean", direction = API.Direction.INOUT)
public boolean impute_missing;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy