All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.tree.ScoreBuildHistogram Maven / Gradle / Ivy

package hex.tree;

import hex.genmodel.utils.DistributionFamily;
import water.H2O.H2OCountedCompleter;
import water.MRTask;
import water.fvec.C0DChunk;
import water.fvec.Chunk;
import water.fvec.Frame;
import water.util.ArrayUtils;

/**  Score and Build Histogram
 *
 * 

Fuse 2 conceptual passes into one: * *

* *
Pass 1:
Score a prior partially-built tree model, and make new Node assignments to * every row. This involves pulling out the current assigned DecidedNode, * "scoring" the row against that Node's decision criteria, and assigning the * row to a new child UndecidedNode (and giving it an improved prediction).
* *
Pass 2:
Build new summary DHistograms on the new child UndecidedNodes * every row got assigned into. Collect counts, mean, variance, min, * max per bin, per column.
*
* *

The result is a set of DHistogram arrays; one DHistogram array for each * unique 'leaf' in the tree being histogramed in parallel. These have node * ID's (nids) from 'leaf' to 'tree._len'. Each DHistogram array is for all * the columns in that 'leaf'. * *

The other result is a prediction "score" for the whole dataset, based on * the previous passes' DHistograms. */ public class ScoreBuildHistogram extends MRTask { final int _k; // Which tree final int _ncols;// Active feature columns final int _nbins;// Numerical columns: Number of bins in each histogram final int _nbins_cats;// Categorical columns: Number of bins in each histogram final DTree _tree; // Read-only, shared (except at the histograms in the Nodes) final int _leaf; // Number of active leaves (per tree) // Histograms for every tree, split & active column DHistogram _hcs[/*tree-relative node-id*/][/*column*/]; final DistributionFamily _family; final int _weightIdx; final int _workIdx; final int _nidIdx; public ScoreBuildHistogram(H2OCountedCompleter cc, int k, int ncols, int nbins, int nbins_cats, DTree tree, int leaf, DHistogram hcs[][], DistributionFamily family, int weightIdx, int workIdx, int nidIdx) { super(cc); _k = k; _ncols= ncols; _nbins= nbins; _nbins_cats= nbins_cats; _tree = tree; _leaf = leaf; _hcs = hcs; _family = family; _weightIdx = weightIdx; _workIdx = workIdx; _nidIdx = nidIdx; } public ScoreBuildHistogram dfork2(byte[] types, Frame fr, boolean run_local) { return dfork(types,fr,run_local); } /** Marker for already decided row. */ static public final int DECIDED_ROW = -1; /** Marker for sampled out rows */ static public final int OUT_OF_BAG = -2; /** Marker for rows without a response */ static public final int MISSING_RESPONSE = -1; /** Marker for a fresh tree */ static public final int UNDECIDED_CHILD_NODE_ID = -1; //Integer.MIN_VALUE; static public final int FRESH = 0; static public boolean isOOBRow(int nid) { return nid <= OUT_OF_BAG; } static public boolean isDecidedRow(int nid) { return nid == DECIDED_ROW; } static public int oob2Nid(int oobNid) { return -oobNid + OUT_OF_BAG; } static public int nid2Oob(int nid) { return -nid + OUT_OF_BAG; } // Once-per-node shared init @Override public void setupLocal( ) { // Init all the internal tree fields after shipping over the wire _tree.init_tree(); // Allocate local shared memory histograms for( int l=_leaf; l<_tree._len; l++ ) { DTree.UndecidedNode udn = _tree.undecided(l); DHistogram hs[] = _hcs[l-_leaf]; int sCols[] = udn._scoreCols; if( sCols != null ) { // Sub-selecting just some columns? for( int col : sCols ) // For tracked cols hs[col].init(); } else { // Else all columns for( int j=0; j<_ncols; j++) // For all columns if( hs[j] != null ) // Tracking this column? hs[j].init(); } } } @Override public void map(Chunk[] chks) { final Chunk wrks = chks[_workIdx]; final Chunk nids = chks[_nidIdx]; final Chunk weight = _weightIdx>=0 ? chks[_weightIdx] : new C0DChunk(1, chks[0].len()); // Pass 1: Score a prior partially-built tree model, and make new Node // assignments to every row. This involves pulling out the current // assigned DecidedNode, "scoring" the row against that Node's decision // criteria, and assigning the row to a new child UndecidedNode (and // giving it an improved prediction). int nnids[] = new int[nids._len]; if( _leaf > 0) // Prior pass exists? score_decide(chks,nids,nnids); else // Just flag all the NA rows for( int row=0; row= 0 ) { // row already predicts perfectly or OOB double w = weight.atd(row); if (w == 0) continue; double resp = wrks.atd(row); assert !Double.isNaN(wrks.atd(row)); // Already marked as sampled-away DHistogram nhs[] = _hcs[nid]; int sCols[] = _tree.undecided(nid+_leaf)._scoreCols; // Columns to score (null, or a list of selected cols) if (sCols == null) { for(int col=0; col= 0 ) nh[i+1]++; // Rollup the histogram of rows-per-NID in this chunk for( int i=0; i<_hcs.length; i++ ) nh[i+1] += nh[i]; // Splat the rows into NID-groups int rows[] = new int[nnids.length]; for( int row=0; row= 0 ) rows[nh[nnids[row]]++] = row; // rows[] has Chunk-local ROW-numbers now, in-order, grouped by NID. // nh[] lists the start of each new NID, and is indexed by NID+1. final DHistogram hcs[][] = _hcs; if( hcs.length==0 ) return; // Unlikely fast cutout // Local temp arrays, no atomic updates. LocalHisto lh = new LocalHisto(Math.max(_nbins,_nbins_cats)); final int cols = _ncols; final int hcslen = hcs.length; // these arrays will be re-used for all cols and nodes double[] ws = new double[chks[0]._len]; double[] cs = new double[chks[0]._len]; double[] ys = new double[chks[0]._len]; weight.getDoubles(ws,0,ws.length); wrks.getDoubles(ys,0,ys.length); for (int c = 0; c < cols; c++) { boolean extracted = false; for (int n = 0; n < hcslen; n++) { int sCols[] = _tree.undecided(n + _leaf)._scoreCols; // Columns to score (null, or a list of selected cols) if (sCols == null || ArrayUtils.find(sCols,c) >= 0) { if (!extracted) { chks[c].getDoubles(cs, 0, cs.length); extracted = true; } DHistogram h = hcs[n][c]; if( h==null ) continue; // Ignore untracked columns in this split lh.resizeIfNeeded(h._nbin); h.updateSharedHistosAndReset(lh, ws, cs, ys, rows, nh[n], n == 0 ? 0 : nh[n - 1]); } } } } /** * Helper class to store the thread-local histograms * Can now change the internal memory layout without affecting the calling code */ static class LocalHisto { public void wAdd(int b, double val) { bins[b]+=val; } public void wYAdd(int b, double val) { sums[b]+=val; } public void wYYAdd(int b, double val) { ssqs[b]+=val; } public void wClear(int b) { bins[b]=0; } public void wYClear(int b) { sums[b]=0; } public void wYYClear(int b) { ssqs[b]=0; } public double w(int b) { return bins[b]; } public double wY(int b) { return sums[b]; } public double wYY(int b) { return ssqs[b]; } private double bins[]; private double sums[]; private double ssqs[]; LocalHisto(int len) { bins = new double[len]; sums = new double[len]; ssqs = new double[len]; } void resizeIfNeeded(int len) { if( len > bins.length) { bins = new double[len]; sums = new double[len]; ssqs = new double[len]; } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy