hex.word2vec.Word2Vec Maven / Gradle / Ivy
package hex.word2vec;
import hex.ModelBuilder;
import hex.ModelCategory;
import hex.word2vec.Word2VecModel.*;
import water.fvec.Frame;
import water.util.Log;
public class Word2Vec extends ModelBuilder {
public enum WordModel { SkipGram }
public enum NormModel { HSM }
@Override public ModelCategory[] can_build() { return new ModelCategory[]{ ModelCategory.WordEmbedding, }; }
@Override public BuilderVisibility builderVisibility() { return BuilderVisibility.Stable; }
@Override public boolean isSupervised() { return false; }
public Word2Vec(boolean startup_once) {
super(new Word2VecParameters(), startup_once);
}
public Word2Vec(Word2VecModel.Word2VecParameters parms) {
super(parms);
init(false);
}
@Override protected Word2VecDriver trainModelImpl() { return new Word2VecDriver(); }
/** Initialize the ModelBuilder, validating all arguments and preparing the
* training frame. This call is expected to be overridden in the subclasses
* and each subclass will start with "super.init();".
*
* Verify that at the first column contains strings. Validate _vec_size, _window_size,
* _sent_sample_rate, _init_learning_rate, and epochs for values within range.
*/
@Override public void init(boolean expensive) {
super.init(expensive);
if (_parms._train != null) { // Can be called without an existing frame, but when present check for a string col
if (_parms.train().vecs().length == 0 || ! _parms.trainVec().isString())
error("_train", "The first column of the training input frame has to be column of Strings.");
}
if (_parms._vec_size > Word2VecParameters.MAX_VEC_SIZE) error("_vec_size", "Requested vector size of "+_parms._vec_size +" in Word2Vec, exceeds limit of "+Word2VecParameters.MAX_VEC_SIZE+".");
if (_parms._vec_size < 1) error("_vec_size", "Requested vector size of " + _parms._vec_size + " in Word2Vec, is not allowed.");
if (_parms._window_size < 1) error("_window_size", "Negative window size not allowed for Word2Vec. Expected value > 0, received " + _parms._window_size);
if (_parms._sent_sample_rate < 0.0) error("_sent_sample_rate", "Negative sentence sample rate not allowed for Word2Vec. Expected a value > 0.0, received " + _parms._sent_sample_rate);
if (_parms._init_learning_rate < 0.0) error("_init_learning_rate", "Negative learning rate not allowed for Word2Vec. Expected a value > 0.0, received " + _parms._init_learning_rate);
if (_parms._epochs < 1) error("_epochs", "Negative epoch count not allowed for Word2Vec. Expected value > 0, received " + _parms._epochs);
}
@Override
protected void ignoreBadColumns(int npredictors, boolean expensive) {
// Do not remove String columns - these are the ones we need!
}
@Override
public boolean haveMojo() { return true; }
private class Word2VecDriver extends Driver {
@Override public void computeImpl() {
Word2VecModel model = null;
try {
init(! _parms.isPreTrained()); // expensive == true IFF the model is not pre-trained
// The model to be built
model = new Word2VecModel(_job._result, _parms, new Word2VecOutput(Word2Vec.this));
model.delete_and_lock(_job);
if (_parms.isPreTrained())
convertToModel(_parms._pre_trained.get(), model);
else
trainModel(model);
} finally {
if (model != null) model.unlock(_job);
}
}
private void trainModel(Word2VecModel model) {
Log.info("Word2Vec: Initializing model training.");
Word2VecModelInfo modelInfo = Word2VecModelInfo.createInitialModelInfo(_parms);
// main loop
Log.info("Word2Vec: Starting to train model, " + _parms._epochs + " epochs.");
long tstart = System.currentTimeMillis();
for (int i = 0; i < _parms._epochs; i++) {
long start = System.currentTimeMillis();
WordVectorTrainer trainer = new WordVectorTrainer(_job, modelInfo).doAll(_parms.trainVec());
long stop = System.currentTimeMillis();
long actProcessedWords = trainer._processedWords;
long estProcessedWords = trainer._nodeProcessedWords._val;
if (estProcessedWords < 0.95 * actProcessedWords)
Log.warn("Estimated number processed words " + estProcessedWords +
" is significantly lower than actual number processed words " + actProcessedWords);
trainer.updateModelInfo(modelInfo);
model.update(_job); // Early version of model is visible
double duration = (stop - start) / 1000.0;
Log.info("Epoch " + i + " took " + duration + "s; Words trained/s: " + actProcessedWords / duration);
model._output._epochs=i;
if (stop_requested()) { // do at least one iteration to avoid null model being returned and all hell will break loose
break;
}
}
long tstop = System.currentTimeMillis();
Log.info("Total time: " + (tstop - tstart) / 1000.0);
Log.info("Finished training the Word2Vec model.");
model.buildModelOutput(modelInfo);
}
private void convertToModel(Frame preTrained, Word2VecModel model) {
if (_parms._vec_size != preTrained.numCols() - 1) {
throw new IllegalStateException("Frame with pre-trained model doesn't conform to the specified vector length.");
}
WordVectorConverter result = new WordVectorConverter(_job, _parms._vec_size, (int) preTrained.numRows()).doAll(preTrained);
model.buildModelOutput(result._words, result._syn0);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy