All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.tree.DHistogram Maven / Gradle / Ivy

package hex.tree;

import hex.Distribution;
import hex.genmodel.utils.DistributionFamily;
import org.apache.log4j.Logger;
import sun.misc.Unsafe;
import water.*;
import water.fvec.Frame;
import water.fvec.Vec;
import water.nbhm.UtilUnsafe;
import water.util.ArrayUtils;
import water.util.AtomicUtils;
import water.util.RandomUtils;

import java.util.Arrays;
import java.util.Random;

/** A Histogram, computed in parallel over a Vec.
 *
 *  

A {@code DHistogram} bins every value added to it, and computes a the * vec min and max (for use in the next split), and response mean and variance * for each bin. {@code DHistogram}s are initialized with a min, max and * number-of- elements to be added (all of which are generally available from * a Vec). Bins run from min to max in uniform sizes. If the {@code * DHistogram} can determine that fewer bins are needed (e.g. boolean columns * run from 0 to 1, but only ever take on 2 values, so only 2 bins are * needed), then fewer bins are used. * *

{@code DHistogram} are shared per-node, and atomically updated. There's * an {@code add} call to help cross-node reductions. The data is stored in * primitive arrays, so it can be sent over the wire. * *

If we are successively splitting rows (e.g. in a decision tree), then a * fresh {@code DHistogram} for each split will dynamically re-bin the data. * Each successive split will logarithmically divide the data. At the first * split, outliers will end up in their own bins - but perhaps some central * bins may be very full. At the next split(s) - if they happen at all - * the full bins will get split, and again until (with a log number of splits) * each bin holds roughly the same amount of data. This 'UniformAdaptive' binning * resolves a lot of problems with picking the proper bin count or limits - * generally a few more tree levels will equal any fancy but fixed-size binning strategy. * *

Support for histogram split points based on quantiles (or random points) is * available as well, via {@code _histoType}. * */ public final class DHistogram extends Iced { private static final Logger LOG = Logger.getLogger(DHistogram.class); public final transient String _name; // Column name (for debugging) public final double _minSplitImprovement; public final byte _isInt; // 0: float col, 1: int col, 2: categorical & int col public char _nbin; // Bin count (excluding NA bucket) public double _step; // Linear interpolation step per bin public final double _min, _maxEx; // Conservative Min/Max over whole collection. _maxEx is Exclusive. public final boolean _initNA; // Does the initial histogram have any NAs? // Needed to correctly count actual number of bins of the initial histogram. public final double _pred1; // We calculate what would be the SE for a possible fallback predictions _pred1 public final double _pred2; // and _pred2. Currently used for min-max bounds in monotonic GBMs. protected double [] _vals; // Values w, wY and wYY encoded per bin in a single array. // If _pred1 or _pred2 are specified they are included as well. // If constraints are used and gamma denominator or nominator needs to be calculated its will be included. protected final int _vals_dim; // _vals.length == _vals_dim * _nbin; How many values per bin are encoded in _vals. // Current possible values are // - 3:_pred1 nor _pred2 provided and gamma denominator is not needed // - 5: if either _pred1 or _pred2 is provided (or both) // - 5 if gamma denominator and nominator are not needed // - 6 if gamma denominator is needed // - 7 if gamma nominator is needed (tweedie constraints) // also see functions hasPreds() and hasDenominator() private final Distribution _dist; public double w(int i){ return _vals[_vals_dim*i+0];} public double wY(int i){ return _vals[_vals_dim*i+1];} public double wYY(int i){return _vals[_vals_dim*i+2];} public void addWAtomic(int i, double wDelta) { // used by AutoML AtomicUtils.DoubleArray.add(_vals, _vals_dim*i+0, wDelta); } public void addNasAtomic(double y, double wy, double wyy) { AtomicUtils.DoubleArray.add(_vals,_vals_dim*_nbin+0,y); AtomicUtils.DoubleArray.add(_vals,_vals_dim*_nbin+1,wy); AtomicUtils.DoubleArray.add(_vals,_vals_dim*_nbin+2,wyy); } public double wNA() { return _vals[_vals_dim*_nbin+0]; } public double wYNA() { return _vals[_vals_dim*_nbin+1]; } public double wYYNA() { return _vals[_vals_dim*_nbin+2]; } /** * Squared Error for NA bucket and prediction value _pred1 * @return se */ public double seP1NA() { return _vals[_vals_dim*_nbin+3]; } /** * Squared Error for NA bucket and prediction value _pred2 * @return se */ public double seP2NA() { return _vals[_vals_dim*_nbin+4]; } public double denNA() { return _vals[_vals_dim*_nbin+5]; } public double nomNA() { return _vals[_vals_dim*_nbin+6]; } final boolean hasPreds() { return _vals_dim >= 5; } final boolean hasDenominator() { return _vals_dim >= 6; } final boolean hasNominator() { return _vals_dim == 7; } // Atomically updated double min/max protected double _min2, _maxIn; // Min/Max, shared, atomically updated. _maxIn is Inclusive. private static final Unsafe _unsafe = UtilUnsafe.getUnsafe(); static private final long _min2Offset; static private final long _max2Offset; static { try { _min2Offset = _unsafe.objectFieldOffset(DHistogram.class.getDeclaredField("_min2")); _max2Offset = _unsafe.objectFieldOffset(DHistogram.class.getDeclaredField("_maxIn")); } catch( Exception e ) { throw H2O.fail(); } } public SharedTreeModel.SharedTreeParameters.HistogramType _histoType; //whether ot use random split points transient double _splitPts[]; // split points between _min and _maxEx (either random or based on quantiles) transient int _zeroSplitPntPos; public final long _seed; public transient boolean _hasQuantiles; public Key _globalQuantilesKey; //key under which original top-level quantiles are stored; /** * Split direction for missing values. * * Warning: If you change this enum, make sure to synchronize them with `hex.genmodel.algos.tree.NaSplitDir` in * package `h2o-genmodel`. */ public enum NASplitDir { //never saw NAs in training None(0), //initial state - should not be present in a trained model // saw NAs in training NAvsREST(1), //split off non-NA (left) vs NA (right) NALeft(2), //NA goes left NARight(3), //NA goes right // never NAs in training, but have a way to deal with them in scoring Left(4), //test time NA should go left Right(5); //test time NA should go right private int value; NASplitDir(int v) { this.value = v; } public int value() { return value; } } static class HistoQuantiles extends Keyed { public HistoQuantiles(Key key, double[] splitPts) { super(key); this.splitPts = splitPts; } double[/*nbins*/] splitPts; } public void setMin( double min ) { long imin = Double.doubleToRawLongBits(min); double old = _min2; while( min < old && !_unsafe.compareAndSwapLong(this, _min2Offset, Double.doubleToRawLongBits(old), imin ) ) old = _min2; } // Find Inclusive _max2 public void setMaxIn( double max ) { long imax = Double.doubleToRawLongBits(max); double old = _maxIn; while( max > old && !_unsafe.compareAndSwapLong(this, _max2Offset, Double.doubleToRawLongBits(old), imax ) ) old = _maxIn; } static class StepOutOfRangeException extends RuntimeException { public StepOutOfRangeException(String name, double step, int xbins, double maxEx, double min) { super("column=" + name + " leads to invalid histogram(check numeric range) -> [max=" + maxEx + ", min = " + min + "], step= " + step + ", xbin= " + xbins); } } public DHistogram(String name, final int nbins, int nbins_cats, byte isInt, double min, double maxEx, boolean initNA, double minSplitImprovement, SharedTreeModel.SharedTreeParameters.HistogramType histogramType, long seed, Key globalQuantilesKey, Constraints cs) { assert nbins >= 1; assert nbins_cats >= 1; assert maxEx > min : "Caller ensures "+maxEx+">"+min+", since if max==min== the column "+name+" is all constants"; if (cs != null) { _pred1 = cs._min; _pred2 = cs._max; if (!cs.needsGammaDenom() && !cs.needsGammaNom()) { _vals_dim = Double.isNaN(_pred1) && Double.isNaN(_pred2) ? 3 : 5; _dist = cs._dist; } else if (!cs.needsGammaNom()) { _vals_dim = 6; _dist = cs._dist; } else { _vals_dim = 7; _dist = cs._dist; } } else { _pred1 = Double.NaN; _pred2 = Double.NaN; _vals_dim = 3; _dist = null; } _isInt = isInt; _name = name; _min = min; _maxEx = maxEx; // Set Exclusive max _min2 = Double.MAX_VALUE; // Set min/max to outer bounds _maxIn= -Double.MAX_VALUE; _initNA = initNA; _minSplitImprovement = minSplitImprovement; _histoType = histogramType; _seed = seed; while (_histoType == SharedTreeModel.SharedTreeParameters.HistogramType.RoundRobin) { SharedTreeModel.SharedTreeParameters.HistogramType[] h = SharedTreeModel.SharedTreeParameters.HistogramType.values(); _histoType = h[(int)Math.abs(seed++ % h.length)]; } if (_histoType== SharedTreeModel.SharedTreeParameters.HistogramType.AUTO) _histoType= SharedTreeModel.SharedTreeParameters.HistogramType.UniformAdaptive; assert(_histoType!= SharedTreeModel.SharedTreeParameters.HistogramType.RoundRobin); _globalQuantilesKey = globalQuantilesKey; // See if we can show there are fewer unique elements than nbins. // Common for e.g. boolean columns, or near leaves. int xbins = isInt == 2 ? nbins_cats : nbins; if (isInt > 0 && maxEx - min <= xbins) { assert ((long) min) == min : "Overflow for integer/categorical histogram: minimum value cannot be cast to long without loss: (long)" + min + " != " + min + "!"; // No overflow xbins = (char) ((long) maxEx - (long) min); // Shrink bins _step = 1.0f; // Fixed stepsize } else { _step = xbins / (maxEx - min); // Step size for linear interpolation, using mul instead of div if(_step <= 0 || Double.isInfinite(_step) || Double.isNaN(_step)) throw new StepOutOfRangeException(name,_step, xbins, maxEx, min); } _nbin = (char) xbins; assert(_nbin>0); assert(_vals == null); if (LOG.isTraceEnabled()) LOG.trace("Histogram: " + this); // Do not allocate the big arrays here; wait for scoreCols to pick which cols will be used. } // Interpolate d to find bin# public int bin(final double col_data) { if(Double.isNaN(col_data)) return _nbin; // NA bucket if (Double.isInfinite(col_data)) // Put infinity to most left/right bin if (col_data<0) return 0; else return _nbin-1; assert _min <= col_data && col_data < _maxEx : "Coldata " + col_data + " out of range " + this; // When the model is exposed to new test data, we could have data that is // out of range of any bin - however this binning call only happens during // model-building. int idx1; double pos = _hasQuantiles ? col_data : ((col_data - _min) * _step); if (_splitPts != null) { idx1 = pos == 0.0 ? _zeroSplitPntPos : Arrays.binarySearch(_splitPts, pos); if (idx1 < 0) idx1 = -idx1 - 2; } else { idx1 = (int) pos; } if (idx1 == _nbin) idx1--; // Roundoff error allows idx1 to hit upper bound, so truncate assert 0 <= idx1 && idx1 < _nbin : idx1 + " " + _nbin; return idx1; } public double binAt( int b ) { if (_hasQuantiles) return _splitPts[b]; return _min + (_splitPts == null ? b : _splitPts[b]) / _step; } // number of bins excluding the NA bin public int nbins() { return _nbin; } // actual number of bins (possibly including NA bin) public int actNBins() { return nbins() + (hasNABin() ? 1 : 0); } public double bins(int b) { return w(b); } public boolean hasNABin() { if (_vals == null) return _initNA; // we are in the initial histogram (and didn't see the data yet) else return wNA() > 0; } // Big allocation of arrays public void init() { init(null);} public void init(final double[] vals) { assert _vals == null; if (_histoType==SharedTreeModel.SharedTreeParameters.HistogramType.Random) { // every node makes the same split points Random rng = RandomUtils.getRNG((Double.doubleToRawLongBits(((_step+0.324)*_min+8.3425)+89.342*_maxEx) + 0xDECAF*_nbin + 0xC0FFEE*_isInt + _seed)); assert _nbin > 1; _splitPts = makeRandomSplitPoints(_nbin, rng); } else if (_histoType== SharedTreeModel.SharedTreeParameters.HistogramType.QuantilesGlobal) { assert (_splitPts == null); if (_globalQuantilesKey != null) { HistoQuantiles hq = DKV.getGet(_globalQuantilesKey); if (hq != null) { _splitPts = ((HistoQuantiles) DKV.getGet(_globalQuantilesKey)).splitPts; if (_splitPts!=null) { if (LOG.isTraceEnabled()) LOG.trace("Obtaining global splitPoints: " + Arrays.toString(_splitPts)); _splitPts = ArrayUtils.limitToRange(_splitPts, _min, _maxEx); if (_splitPts.length > 1 && _splitPts.length < _nbin) _splitPts = ArrayUtils.padUniformly(_splitPts, _nbin); if (_splitPts.length <= 1) { _splitPts = null; //abort, fall back to uniform binning _histoType = SharedTreeModel.SharedTreeParameters.HistogramType.UniformAdaptive; } else { _hasQuantiles=true; _nbin = (char)_splitPts.length; if (LOG.isTraceEnabled()) LOG.trace("Refined splitPoints: " + Arrays.toString(_splitPts)); } } } } } else assert(_histoType== SharedTreeModel.SharedTreeParameters.HistogramType.UniformAdaptive); if (_splitPts != null) { // Inject canonical representation of zero - convert "negative zero" to 0.0d // This is for PUBDEV-7161 - Arrays.binarySearch used in bin() method is not able to find a negative zero, // we always use 0.0d instead // We also cache the position of zero in the split points for a faster lookup _zeroSplitPntPos = Arrays.binarySearch(_splitPts, 0.0d); if (_zeroSplitPntPos < 0) { int nzPos = Arrays.binarySearch(_splitPts, -0.0d); if (nzPos >= 0) { _splitPts[nzPos] = 0.0d; _zeroSplitPntPos = nzPos; } } } // otherwise AUTO/UniformAdaptive _vals = vals == null ? MemoryManager.malloc8d(_vals_dim * _nbin + _vals_dim) : vals; // this always holds: _vals != null assert _nbin > 0; } // Add one row to a bin found via simple linear interpolation. // Compute bin min/max. // Compute response mean & variance. void incr( double col_data, double y, double w ) { if (Double.isNaN(col_data)) { addNasAtomic(w,w*y,w*y*y); return; } assert Double.isInfinite(col_data) || (_min <= col_data && col_data < _maxEx) : "col_data "+col_data+" out of range "+this; int b = bin(col_data); // Compute bin# via linear interpolation water.util.AtomicUtils.DoubleArray.add(_vals,_vals_dim*b,w); // Bump count in bin // Track actual lower/upper bound per-bin if (!Double.isInfinite(col_data)) { setMin(col_data); setMaxIn(col_data); } if( y != 0 && w != 0) incr0(b,y,w); } // Merge two equal histograms together. Done in a F/J reduce, so no // synchronization needed. public void add( DHistogram dsh ) { assert (_vals == null || dsh._vals == null) || (_isInt == dsh._isInt && _nbin == dsh._nbin && _step == dsh._step && _min == dsh._min && _maxEx == dsh._maxEx); if( dsh._vals == null ) return; if(_vals == null) init(dsh._vals); else ArrayUtils.add(_vals,dsh._vals); if (_min2 > dsh._min2) _min2 = dsh._min2; if (_maxIn < dsh._maxIn) _maxIn = dsh._maxIn; } // Inclusive min & max public double find_min () { return _min2 ; } public double find_maxIn() { return _maxIn; } // Exclusive max public double find_maxEx() { return find_maxEx(_maxIn,_isInt); } public static double find_maxEx(double maxIn, int isInt ) { double ulp = Math.ulp(maxIn); if( isInt > 0 && 1 > ulp ) ulp = 1; double res = maxIn+ulp; return Double.isInfinite(res) ? maxIn : res; } // The initial histogram bins are setup from the Vec rollups. public static DHistogram[] initialHist(Frame fr, int ncols, int nbins, DHistogram hs[], long seed, SharedTreeModel.SharedTreeParameters parms, Key[] globalQuantilesKey, Constraints cs) { Vec vecs[] = fr.vecs(); for( int c=0; c 0, seed, parms, globalQuantilesKey[c], cs); } catch(StepOutOfRangeException e) { hs[c] = null; LOG.warn("Column " + fr._names[c] + " with min = " + v.min() + ", max = " + v.max() + " has step out of range (" + e.getMessage() + ") and is ignored."); } assert (hs[c] == null || vlen > 0); } return hs; } public static DHistogram make(String name, final int nbins, byte isInt, double min, double maxEx, boolean hasNAs, long seed, SharedTreeModel.SharedTreeParameters parms, Key globalQuantilesKey, Constraints cs) { return new DHistogram(name, nbins, parms._nbins_cats, isInt, min, maxEx, hasNAs, parms._min_split_improvement, parms._histogram_type, seed, globalQuantilesKey, cs); } // Pretty-print a histogram @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(_name).append(":").append(_min).append("-").append(_maxEx).append(" step=" + (1 / _step) + " nbins=" + nbins() + " actNBins=" + actNBins() + " isInt=" + _isInt); if( _vals != null ) { for(int b = 0; b< _nbin; b++ ) { sb.append(String.format("\ncnt=%f, [%f - %f], mean/var=", w(b),_min+b/_step,_min+(b+1)/_step)); sb.append(String.format("%6.2f/%6.2f,", mean(b), var(b))); } sb.append('\n'); } return sb.toString(); } double mean(int b) { double n = w(b); return n>0 ? wY(b)/n : 0; } /** * compute the sample variance within a given bin * @param b bin id * @return sample variance (>= 0) */ public double var (int b) { double n = w(b); if( n<=1 ) return 0; return Math.max(0, (wYY(b) - wY(b)* wY(b)/n)/(n-1)); //not strictly consistent with what is done elsewhere (use n instead of n-1 to get there) } // Add one row to a bin found via simple linear interpolation. // Compute response mean & variance. // Done racily instead F/J map calls, so atomic public void incr0( int b, double y, double w ) { AtomicUtils.DoubleArray.add(_vals,_vals_dim*b+1,(float)(w*y)); //See 'HistogramTest' JUnit for float-casting rationalization AtomicUtils.DoubleArray.add(_vals,_vals_dim*b+2,(float)(w*y*y)); } /** * Update counts in appropriate bins. Not thread safe, assumed to have private copy. * @param ws observation weights * @param resp original response (response column of the outer model, needed to calculate Gamma denominator) * @param cs column data * @param ys response column of the regression tree (eg. GBM residuals, not the original model response!) * @param preds current model predictions (optional, provided only if needed) * @param rows rows sorted by leaf assignemnt * @param hi upper bound on index into rows array to be processed by this call (exclusive) * @param lo lower bound on index into rows array to be processed by this call (inclusive) */ void updateHisto(double[] ws, double resp[], double[] cs, double[] ys, double[] preds, int[] rows, int hi, int lo){ // Gather all the data for this set of rows, for 1 column and 1 split/NID // Gather min/max, wY and sum-squares. for(int r = lo; r< hi; ++r) { final int k = rows[r]; final double weight = ws[k]; if (weight == 0) continue; // Needed for DRF only final double col_data = cs[k]; if (col_data < _min2) _min2 = col_data; if (col_data > _maxIn) _maxIn = col_data; final double y = ys[k]; // these assertions hold for GBM, but not for DRF // assert weight != 0 || y == 0; // assert !Double.isNaN(y); double wy = weight * y; double wyy = wy * y; int b = bin(col_data); final int binDimStart = _vals_dim*b; _vals[binDimStart + 0] += weight; _vals[binDimStart + 1] += wy; _vals[binDimStart + 2] += wyy; if (_vals_dim >= 5 && !Double.isNaN(resp[k])) { if (_dist._family.equals(DistributionFamily.quantile)) { _vals[binDimStart + 3] += _dist.deviance(weight, y, _pred1); _vals[binDimStart + 4] += _dist.deviance(weight, y, _pred2); } else { _vals[binDimStart + 3] += weight * (_pred1 - y) * (_pred1 - y); _vals[binDimStart + 4] += weight * (_pred2 - y) * (_pred2 - y); } if (_vals_dim >= 6) { _vals[binDimStart + 5] += _dist.gammaDenom(weight, resp[k], y, preds[k]); if (_vals_dim == 7) { _vals[binDimStart + 6] += _dist.gammaNum(weight, resp[k], y, preds[k]); } } } } } /** * Cast bin values *except for sums of weights and Na-bucket counters to floats to drop least significant bits. * Improves reproducibility (drop bits most affected by floating point error). */ public void reducePrecision(){ if(_vals == null) return; for(int i = 0; i < _vals.length -_vals_dim /* do not reduce precision of NAs */; i+=_vals_dim) { _vals[i+1] = (float)_vals[i+1]; _vals[i+2] = (float)_vals[i+2]; } } public void updateSharedHistosAndReset(ScoreBuildHistogram.LocalHisto lh, double[] ws, double[] cs, double[] ys, int [] rows, int hi, int lo) { double minmax[] = new double[]{_min2,_maxIn}; // Gather all the data for this set of rows, for 1 column and 1 split/NID // Gather min/max, wY and sum-squares. for(int r = lo; r< hi; ++r) { int k = rows[r]; double weight = ws[k]; if (weight == 0) continue; double col_data = cs[k]; if (col_data < minmax[0]) minmax[0] = col_data; if (col_data > minmax[1]) minmax[1] = col_data; double y = ys[k]; assert(!Double.isNaN(y)); double wy = weight * y; double wyy = wy * y; if (Double.isNaN(col_data)) { //separate bucket for NA - atomically added to the shared histo addNasAtomic(weight,wy,wyy); } else { // increment local per-thread histograms int b = bin(col_data); lh.wAdd(b,weight); lh.wYAdd(b,wy); lh.wYYAdd(b,wyy); } } // Atomically update histograms setMin(minmax[0]); // Track actual lower/upper bound per-bin setMaxIn(minmax[1]); final int len = _nbin; for( int b=0; b





© 2015 - 2025 Weber Informatics LLC | Privacy Policy