All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.psvm.MetricBuilderPSVM Maven / Gradle / Ivy

package hex.psvm;

import hex.*;
import water.fvec.Frame;
import water.util.ArrayUtils;
import water.util.MathUtils;

/**
 * Binomial Metric builder tailored to SVM
 * 
 * SVM doesn't predict probabilities, only probabilities 0-1 are returned, this renders some binomial metric misleading (eg. AUC, logloss)
 * For maximum code re-use we still do use AUCBuilder, AUC2 instances provide confusion matrix and all metrics based
 * on confusion matrix (accuracy, ...)
 * 
 * This builder produces an instance of ModelMetricsBinomial, with irrelevant metrics undefined (NaN)
 * @param 
 */
public class MetricBuilderPSVM> extends ModelMetricsSupervised.MetricBuilderSupervised {
  protected AUC2.AUCBuilder _auc;

  public MetricBuilderPSVM(String[] domain) {
    super(2, domain);
    _auc = new AUC2.AUCBuilder(AUC2.NBINS);
  }

  // Passed a float[] sized nclasses+1; ds[0] must be a prediction.  ds[1...nclasses-1] must be a class
  // distribution;
  @Override
  public double[] perRow(double ds[], float[] yact, Model m) {
    return perRow(ds, yact, 1, 0, m);
  }

  @Override
  public double[] perRow(double ds[], float[] yact, double w, double o, Model m) {
    if (Float.isNaN(yact[0])) return ds; // No errors if   actual   is missing
    if (ArrayUtils.hasNaNs(ds)) return ds;  // No errors if prediction has missing values
    if (w == 0 || Double.isNaN(w)) return ds;
    int iact = (int) yact[0];
    if (iact != 0 && iact != 1) return ds; // The actual is effectively a NaN
    _wY += w * iact;
    _wYY += w * iact * iact;
    // Compute error
    double err = iact + 1 < ds.length ? 1 - ds[iact + 1] : 1;  // Error: distance from predicting ycls as 1.0
    _sumsqe += w * err * err;           // Squared error
    _count++;
    _wcount += w;
    assert !Double.isNaN(_sumsqe);
    _auc.perRow(ds[2], iact, w);
    return ds;                // Flow coding
  }

  @Override
  public void reduce(T mb) {
    super.reduce(mb); // sumseq, count
    _auc.reduce(mb._auc);
  }

  /**
   * Create a ModelMetrics for a given model and frame
   *
   * @param m                Model
   * @param f                Frame
   * @param frameWithWeights Frame that contains extra columns such as weights
   * @param preds            Optional predictions (can be null), only used to compute Gains/Lift table for binomial problems  @return
   * @return ModelMetricsBinomial
   */
  @Override
  public ModelMetrics makeModelMetrics(Model m, Frame f, Frame frameWithWeights, Frame preds) {
    double mse = Double.NaN;
    double sigma = Double.NaN;
    final AUC2 auc;
    if (_wcount > 0) {
      sigma = weightedSigma();
      mse = _sumsqe / _wcount;
      auc = AUC2.make01AUC(_auc);
    } else {
      auc = AUC2.emptyAUC();
    }
    ModelMetricsBinomial mm = new ModelMetricsBinomial(m, f, _count, mse, _domain, sigma, auc, Double.NaN, null, _customMetric);
    if (m != null) m.addModelMetrics(mm);
    return mm;
  }

  public String toString() {
    if (_wcount == 0) return "empty, no rows";
    return "mse = " + MathUtils.roundToNDigits(_sumsqe / _wcount, 3);
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy