hex.gam.GAM Maven / Gradle / Ivy
package hex.gam;
import hex.*;
import hex.gam.GAMModel.GAMParameters;
import hex.gam.GamSplines.ThinPlateDistanceWithKnots;
import hex.gam.GamSplines.ThinPlatePolynomialWithKnots;
import hex.gam.MatrixFrameUtils.GamUtils;
import hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn;
import hex.gam.MatrixFrameUtils.GenISplineGamOneColumn;
import hex.glm.GLM;
import hex.glm.GLMModel;
import hex.glm.GLMModel.GLMParameters;
import hex.gram.Gram;
import jsr166y.ForkJoinTask;
import jsr166y.RecursiveAction;
import water.*;
import water.exceptions.H2OModelBuilderIllegalArgumentException;
import water.fvec.Frame;
import water.fvec.Vec;
import water.parser.ParseDataset;
import water.rapids.Rapids;
import water.rapids.Val;
import water.util.ArrayUtils;
import water.util.IcedHashSet;
import water.util.Log;
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.IntStream;
import static hex.gam.GAMModel.adaptValidFrame;
import static hex.gam.GamSplines.ThinPlateRegressionUtils.*;
import static hex.gam.MatrixFrameUtils.GAMModelUtils.*;
import static hex.gam.MatrixFrameUtils.GamUtils.*;
import static hex.gam.MatrixFrameUtils.GamUtils.AllocateType.*;
import static hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn.centralizeFrame;
import static hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn.generateZTransp;
import static hex.genmodel.utils.ArrayUtils.flat;
import static hex.glm.GLMModel.GLMParameters.Family.multinomial;
import static hex.glm.GLMModel.GLMParameters.Family.ordinal;
import static hex.glm.GLMModel.GLMParameters.GLMType.gam;
import static hex.util.LinearAlgebraUtils.generateOrthogonalComplement;
import static hex.util.LinearAlgebraUtils.generateQR;
import static water.util.ArrayUtils.expandArray;
import static water.util.ArrayUtils.subtract;
public class GAM extends ModelBuilder {
private static final int MIN_ISPLINE_NUM_KNOTS = 3;
private double[][][] _knots; // Knots for splines
private int _thinPlateSmoothersWithKnotsNum = 0;
private int _cubicSplineNum = 0;
private int _iSplineNum = 0;
double[][] _gamColMeansRaw; // store raw gam column means in gam_column_sorted order and only for thin plate smoothers
public double[][] _oneOGamColStd;
public double[] _penaltyScale;
public int _glmNFolds = 0;
Model.Parameters.FoldAssignmentScheme _foldAssignment = null;
String _foldColumn = null;
boolean _cvOn = false;
@Override
public ModelCategory[] can_build() {
return new ModelCategory[]{ModelCategory.Regression};
}
@Override
public boolean isSupervised() {
return true;
}
@Override
public BuilderVisibility builderVisibility() {
return BuilderVisibility.Experimental;
}
@Override
public boolean havePojo() {
return false;
}
@Override
public boolean haveMojo() {
return true;
}
public GAM(boolean startup_once) {
super(new GAMModel.GAMParameters(), startup_once);
}
public GAM(GAMModel.GAMParameters parms) {
super(parms);
init(false);
}
public GAM(GAMModel.GAMParameters parms, Key key) {
super(parms, key);
init(false);
}
/***
* This method will look at the keys of knots stored in _parms._knot_ids and copy them over to double[][][]
* array. Note that we have smoothers that take different number of columns. We will keep the gam columns
* of single predictor smoothers to the front and multiple predictor smoothers to the back of the array. For
* smoothers that take more than one predictor column, knot location is determined by first sorting the first
* gam_column and then extract the quantiles of that sorted gam_columns. Here, instead of taking the value for
* one gam column, we take the whole row with all the predictors for that smoother.
*
* @return double[][][] array containing the knots specified by users
*/
public double[][][] generateKnotsFromKeys() { // todo: parallize this operation
int numGamCols = _parms._gam_columns.length; // total number of predictors in all smoothers
double[][][] knots = new double[numGamCols][][]; // 1st index into gam column, 2nd index number of knots for the row
boolean allNull = _parms._knot_ids == null;
int csInd = 0;
int isInd = _cubicSplineNum;
int tpInd = _cubicSplineNum+_iSplineNum;
int gamIndex; // index into the sorted arrays with CS/I-splines front, TP back.
for (int outIndex = 0; outIndex < _parms._gam_columns.length; outIndex++) { // go through each gam_column group
String tempKey = allNull ? null : _parms._knot_ids[outIndex]; // one knot_id for each smoother
if (_parms._bs[outIndex] == 1) // thin plate regression
gamIndex = tpInd++;
else if (_parms._bs[outIndex] == 0)
gamIndex = csInd++;
else // I-spline
gamIndex = isInd++;
knots[gamIndex] = new double[_parms._gam_columns[outIndex].length][];
if (tempKey != null) { // read knots location from Frame given by user
final Frame knotFrame = DKV.getGet(tempKey);
double[][] knotContent = new double[(int) knotFrame.numRows()][_parms._gam_columns[outIndex].length];
final ArrayUtils.FrameToArray f2a = new ArrayUtils.FrameToArray(0,
_parms._gam_columns[outIndex].length - 1, knotFrame.numRows(), knotContent);
knotContent = f2a.doAll(knotFrame).getArray(); // first index is row, second index is column
final double[][] knotCTranspose = ArrayUtils.transpose(knotContent);// change knots to correct order
for (int innerIndex = 0; innerIndex < knotCTranspose.length; innerIndex++) {
knots[gamIndex][innerIndex] = new double[knotContent.length];
System.arraycopy(knotCTranspose[innerIndex], 0, knots[gamIndex][innerIndex], 0,
knots[gamIndex][innerIndex].length);
if (knotCTranspose.length == 1 && (_parms._bs[outIndex] == 0 || _parms._bs[outIndex] == 2)) // only check for order to single smoothers
failVerifyKnots(knots[gamIndex][innerIndex], outIndex);
}
_parms._num_knots[outIndex] = knotContent.length;
} else { // current column knot key is null, we will use default method to generate knots
final Frame predictVec = new Frame(_parms._gam_columns[outIndex],
_parms.train().vecs(_parms._gam_columns[outIndex]));
if (_parms._bs[outIndex] == 0 || _parms._bs[outIndex] == 2) {
knots[gamIndex][0] = generateKnotsOneColumn(predictVec, _parms._num_knots[outIndex]);
failVerifyKnots(knots[gamIndex][0], outIndex);
} else { // generate knots for multi-predictor smoothers
knots[gamIndex] = genKnotsMultiplePreds(predictVec, _parms, outIndex);
failVerifyKnots(knots[gamIndex][0], outIndex);
}
}
}
return knots; // CS/I-splines come first, TP is at the back
}
// this function will check and make sure the knots location specified in knots are valid in the following sense:
// 1. They do not contain NaN
// 2. They are sorted in ascending order.
public void failVerifyKnots(double[] knots, int gam_column_index) {
if (_parms._bs[gam_column_index] == 2 && knots.length < MIN_ISPLINE_NUM_KNOTS)
error("knots_id", "number of knots specified in knots_id must >= 3 for I-splines.");
for (int index = 0; index < knots.length; index++) {
if (Double.isNaN(knots[index])) {
error("gam_columns/knots_id", String.format("Knots generated by default or specified in knots_id " +
"ended up containing a NaN value for gam_column %s. Please specify alternate knots_id" +
" or choose other columns.", _parms._gam_columns[gam_column_index][0]));
return;
}
if (index > 0 && knots[index - 1] > knots[index]) {
error("knots_id", String.format("knots not sorted in ascending order for gam_column %s. " +
"Knots at index %d: %f. Knots at index %d: %f",_parms._gam_columns[gam_column_index][0], index-1,
knots[index-1], index, knots[index]));
return;
}
if (index > 0 && knots[index - 1] == knots[index]) {
error("gam_columns/knots_id", String.format("chosen gam_column %s does have not enough values to " +
"generate well-defined knots. Please choose other columns or reduce " +
"the number of knots. If knots are specified in knots_id, choose alternate knots_id as the" +
" knots are not in ascending order. Knots at index %d: %f. Knots at index %d: %f",
_parms._gam_columns[gam_column_index][0], index-1, knots[index-1], index, knots[index]));
return;
}
}
}
@Override
public void init(boolean expensive) {
if (_parms._nfolds > 0 || _parms._fold_column != null) {
_parms._glmCvOn = true; // added for client mode
_parms._glmNFolds = _parms._fold_column == null ? _parms._nfolds
: _parms.train().vec(_parms._fold_column).toCategoricalVec().domain().length;
_cvOn = true;
_glmNFolds = _parms._glmNFolds;
if (_parms._fold_assignment != null) {
_parms._glmFoldAssignment = _parms._fold_assignment; // added for client mode
_foldAssignment = _parms._fold_assignment;
_parms._fold_assignment = null;
}
if (_parms._fold_column != null) {
_parms._glmFoldColumn = _parms._fold_column; // added for client mode
_foldColumn = _parms._fold_column;
_parms._fold_column = null;
}
_parms._nfolds = 0;
}
super.init(expensive);
if (expensive && (_knots == null)) // add GAM specific check here, only do it once especially during CV
validateGamParameters();
}
private void validateGamParameters() {
if (_parms._max_iterations == 0)
error("_max_iterations", H2O.technote(2, "if specified, must be >= 1."));
if (_parms._family == GLMParameters.Family.AUTO) {
if (nclasses() == 1 & _parms._link != GLMParameters.Link.family_default && _parms._link != GLMParameters.Link.identity
&& _parms._link != GLMParameters.Link.log && _parms._link != GLMParameters.Link.inverse && _parms._link != null) {
error("_family", H2O.technote(2, "AUTO for undelying response requires the link to be family_default, identity, log or inverse."));
} else if (nclasses() == 2 & _parms._link != GLMParameters.Link.family_default && _parms._link != GLMParameters.Link.logit
&& _parms._link != null) {
error("_family", H2O.technote(2, "AUTO for undelying response requires the link to be family_default or logit."));
} else if (nclasses() > 2 & _parms._link != GLMParameters.Link.family_default & _parms._link != GLMParameters.Link.multinomial
&& _parms._link != null) {
error("_family", H2O.technote(2, "AUTO for undelying response requires the link to be family_default or multinomial."));
}
}
if (error_count() > 0)
throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(GAM.this);
if (_parms._gam_columns == null) { // check _gam_columns contains valid columns
error("_gam_columns", "must specify columns names to apply GAM to. If you don't have any," +
" use GLM.");
} else { // check and make sure gam_columns column types are legal
if (_parms._bs == null)
setDefaultBSType(_parms);
if ((_parms._bs != null) && (_parms._gam_columns.length != _parms._bs.length)) // check length
error("gam colum number", "Number of gam columns implied from _bs and _gam_columns do not " +
"match.");
assertLegalGamColumnsNBSTypes(); // number of CS and TP smoothers determined.
}
if (_parms._scale == null)
setDefaultScale(_parms);
setGamPredSize(_parms, _cubicSplineNum+_iSplineNum);
if (_thinPlateSmoothersWithKnotsNum > 0)
setThinPlateParameters(_parms, _thinPlateSmoothersWithKnotsNum); // set the m, M for thin plate regression smoothers
checkOrChooseNumKnots(); // check valid num_knot assignment or choose num_knots
for (int index = 0; index < _parms._gam_columns.length; index++) {
Frame dataset = _parms.train();
String cname = _parms._gam_columns[index][0]; // only check the first gam_column
if (dataset.vec(cname).isInt() && ((dataset.vec(cname).max() - dataset.vec(cname).min() + 1) < _parms._num_knots[index]))
error("gam_columns", "column " + cname + " has cardinality lower than the number of knots and cannot be used as a gam" +
" column.");
}
if ((_parms._num_knots.length != _parms._gam_columns.length))
error("gam colum number", "Number of gam columns implied from _num_knots and _gam_columns do" +
" not match.");
if (_parms._knot_ids != null) { // check knots location specification
if (_parms._knot_ids.length != _parms._gam_columns.length)
error("gam colum number", "Number of gam columns implied from _num_knots and _knot_ids do" +
" not match.");
}
_knots = generateKnotsFromKeys(); // generate knots and verify that they are given correctly
sortGAMParameters(_parms, _cubicSplineNum, _iSplineNum); // move cubic spline to the front and thin plate to the back
checkThinPlateParams();
if (_parms._saveZMatrix && ((_train.numCols() - 1 + _parms._num_knots.length) < 2))
error("_saveZMatrix", "can only be enabled if the number of predictors plus" +
" Gam columns in gam_columns exceeds 2");
if ((_parms._lambda_search || !_parms._intercept || _parms._lambda == null || _parms._lambda[0] > 0))
_parms._use_all_factor_levels = true;
if (_parms._link == null) {
_parms._link = GLMParameters.Link.family_default;
}
if (_parms._family == GLMParameters.Family.AUTO) {
if (_nclass == 1) {
_parms._family = GLMParameters.Family.gaussian;
} else if (_nclass == 2) {
_parms._family = GLMParameters.Family.binomial;
} else {
_parms._family = GLMParameters.Family.multinomial;
}
}
if (_parms._link == null || _parms._link.equals(GLMParameters.Link.family_default))
_parms._link = _parms._family.defaultLink;
if ((_parms._family == GLMParameters.Family.multinomial || _parms._family == GLMParameters.Family.ordinal ||
_parms._family == GLMParameters.Family.binomial)
&& response().get_type() != Vec.T_CAT) {
error("_response_column", String.format("For given response family '%s', please provide a categorical" +
" response column. Current response column type is '%s'.", _parms._family, response().get_type_str()));
}
}
/**
* verify and check thin plate regression smoothers specific parameters
**/
public void checkThinPlateParams() {
if (_thinPlateSmoothersWithKnotsNum ==0)
return;
_parms._num_knots_tp = new int[_thinPlateSmoothersWithKnotsNum];
System.arraycopy(_parms._num_knots_sorted, _cubicSplineNum+_iSplineNum, _parms._num_knots_tp, 0,
_thinPlateSmoothersWithKnotsNum);
int tpIndex = 0;
for (int index = 0; index < _parms._gam_columns.length; index++) {
if (_parms._bs_sorted[index] == 1) {
if (_parms._num_knots_sorted[index] < _parms._M[tpIndex] + 1) {
error("num_knots", "num_knots for gam column start with " + _parms._gam_columns_sorted[index][0] +
" did not specify enough num_knots. It should be equal or greater than " + (_parms._M[tpIndex] + 1) + ".");
}
tpIndex++;
}
}
}
/**
* set default num_knots to 10 for gam_columns where there is no knot_id specified for CS smoothers
* for TP smoothers, default is set to be max of 10 or _M+2.
* for I-splines, default set to 3 which is minimum.
*/
public void checkOrChooseNumKnots() {
if (_parms._num_knots == null)
_parms._num_knots = new int[_parms._gam_columns.length]; // different columns may have different num knots
if (_parms._spline_orders == null) {
_parms._spline_orders = new int[_parms._gam_columns.length];
Arrays.fill(_parms._spline_orders, 3);
} else {
for (int index=0; index<_parms._spline_orders.length; index++)
if (_parms._bs[index]==2 && _parms._spline_orders[index] < 1)
error("spline_orders", "GAM I-spline spline_orders must be >= 1");
}
int tpCount = 0;
for (int index = 0; index < _parms._num_knots.length; index++) { // set zero value _num_knots
if (_parms._knot_ids == null || (_parms._knot_ids != null && _parms._knot_ids[index] == null)) { // knots are not specified
int numKnots = _parms._num_knots[index];
if (_parms._bs[index] == 2) {
if (_parms._num_knots[index] == 0)
_parms._num_knots[index] = 3;
else if (_parms._num_knots[index] < 3)
error("num_knots", " must >= 3 for I-splines.");
}
int naSum = 0;
for (int innerIndex = 0; innerIndex < _parms._gam_columns[index].length; innerIndex++) {
naSum += _parms.train().vec(_parms._gam_columns[index][innerIndex]).naCnt();
}
long eligibleRows = _train.numRows()-naSum;
if (_parms._num_knots[index] == 0) { // set num_knots to default
int defaultRows = 10;
if (_parms._bs[index] == 1) {
defaultRows = Math.max(defaultRows, _parms._M[tpCount] + 2);
tpCount++;
}
if (_parms._bs[index] == 2)
defaultRows = MIN_ISPLINE_NUM_KNOTS;
_parms._num_knots[index] = eligibleRows < defaultRows ? (int) eligibleRows : defaultRows;
} else { // num_knots assigned by user and check to make sure it is legal
if (numKnots > eligibleRows) {
error("num_knots", " number of knots specified in num_knots: "+numKnots+" for smoother" +
" with first predictor "+_parms._gam_columns[index][0]+". Reduce _num_knots.");
}
if (_parms._bs[index] == 0 && _parms._num_knots[index] < 3)
error("num_knots", " number of knots specified in num_knots "+numKnots+" for cs splines must be >= 3.");
}
}
}
}
// Check and make sure correct BS type is assigned to the various gam_columns specified. In addition, the number
// of CS and TP smoothers are counted here as well.
public void assertLegalGamColumnsNBSTypes() {
Frame dataset = _parms.train();
List cNames = Arrays.asList(dataset.names());
for (int index = 0; index < _parms._gam_columns.length; index++) {
if (_parms._bs != null) { // check and make sure the correct bs type is chosen
if (_parms._gam_columns[index].length > 1 && _parms._bs[index] != 1)
error("bs", "Smoother with multiple predictors can only use bs = 1");
if (_parms._bs[index] == 1)
_thinPlateSmoothersWithKnotsNum++; // record number of thin plate
if (_parms._bs[index] == 0)
_cubicSplineNum++;
if (_parms._bs[index] == 2) {
if (multinomial.equals(_parms._family) || ordinal.equals(_parms._family))
error("family", "multinomial and ordinal families cannot be used with I-splines.");
_iSplineNum++;
}
for (int innerIndex = 0; innerIndex < _parms._gam_columns[index].length; innerIndex++) {
String cname = _parms._gam_columns[index][innerIndex];
if (!cNames.contains(cname))
error("gam_columns", "column name: " + cname + " does not exist in your dataset.");
if (dataset.vec(cname).isCategorical())
error("gam_columns", "column " + cname + " is categorical and cannot be used as a gam " +
"column.");
if (dataset.vec(cname).isBad() || dataset.vec(cname).isTime() || dataset.vec(cname).isUUID() ||
dataset.vec(cname).isConst())
error("gam_columns", String.format("Column '%s' of type '%s' cannot be used as GAM column. Column types " +
"BAD, TIME, CONSTANT and UUID cannot be used.", cname, dataset.vec(cname).get_type_str()));
if (!dataset.vec(cname).isNumeric())
error("gam_columns", "column " + cname + " is not numerical and cannot be used as a gam" +
" column.");
}
}
}
}
@Override
protected boolean computePriorClassDistribution() {
return (_parms._family== multinomial)||(_parms._family== ordinal);
}
@Override
protected GAMDriver trainModelImpl() {
if (_parms._glmCvOn) { // for client mode, copy over the cv settings
_cvOn = true;
if (_parms._glmFoldAssignment != null)
_foldAssignment = _parms._glmFoldAssignment;
if (_parms._glmFoldColumn != null)
_foldColumn = _parms._glmFoldColumn;
_glmNFolds = _parms._glmNFolds;
}
return new GAMDriver();
}
@Override
protected int nModelsInParallel(int folds) {
return nModelsInParallel(folds,2);
}
private class GAMDriver extends Driver {
double[][][] _zTranspose; // store transpose(Z) matrices for CS and TP smoothers
double[][][] _zTransposeCS; // store transpose(zCS) for thin plate smoother to remove optimization constraint
double[][][] _penaltyMatCenter; // store centered penalty matrices of all smoothers
double[][][] _penaltyMat; // penalty matrix before any kind of processing
double[][][] _penaltyMatCS; // penalty matrix after removing optimization constraint, only for thin plate
double[][][] _starT; // store T* as in 3.2.3
public double[][][] _binvD; // store BinvD for each CS smoother specified for scoring
public int[] _numKnots; // store number of knots per smoother
String[][] _gamColNames; // store column names of all smoothers before any processing
String[][] _gamColNamesCenter; // gamColNames after centering is performed.
Key[] _gamFrameKeysCenter;
double[][] _gamColMeans; // store gam column means without centering.
int[][][] _allPolyBasisList; // store polynomial basis function for all TP smoothers
DataInfo _dinfo = null;
/***
* This method will take the _train that contains the predictor columns and response columns only and add to it
* the following:
* 1. For each smoother included in gam_columns, expand it out to calculate the f(x) and attach to the frame.
* 2. For TP smoothers, it will calculate the zCS transpose
* 3. It will calculate the ztranspose that is used to center each smoother.
* 4. It will calculate a penalty matrix used to control the smoothness of GAM.
*
* @return
*/
Frame adaptTrain() {
int numGamFrame = _parms._gam_columns.length;
_zTranspose = GamUtils.allocate3DArray(numGamFrame, _parms, firstOneLess); // for centering for all smoothers
_penaltyMat = _parms._savePenaltyMat?GamUtils.allocate3DArray(numGamFrame, _parms, sameOrig):null;
_penaltyMatCenter = GamUtils.allocate3DArray(numGamFrame, _parms, bothOneLess);
removeCenteringIS(_penaltyMatCenter, _parms);
if (_cubicSplineNum > 0) // CS-spline only
_binvD = GamUtils.allocate3DArrayCS(_cubicSplineNum, _parms, firstTwoLess);
_numKnots = MemoryManager.malloc4(numGamFrame);
_gamColNames = new String[numGamFrame][];
_gamColNamesCenter = new String[numGamFrame][];
_gamFrameKeysCenter = new Key[numGamFrame];
_gamColMeans = new double[numGamFrame][]; // means of gamified columns
_penaltyScale = new double[numGamFrame];
if (_thinPlateSmoothersWithKnotsNum > 0) { // only allocate if there are thin plate smoothers
int[] kMinusM = subtract(_parms._num_knots_tp, _parms._M);
_zTransposeCS = GamUtils.allocate3DArrayTP(_thinPlateSmoothersWithKnotsNum, _parms, kMinusM, _parms._num_knots_tp);
_penaltyMatCS = GamUtils.allocate3DArrayTP(_thinPlateSmoothersWithKnotsNum, _parms, kMinusM, kMinusM);
_allPolyBasisList = new int[_thinPlateSmoothersWithKnotsNum][][];
_gamColMeansRaw = new double[_thinPlateSmoothersWithKnotsNum][];
_oneOGamColStd = new double[_thinPlateSmoothersWithKnotsNum][];
if (_parms._savePenaltyMat)
_starT = GamUtils.allocate3DArrayTP(_thinPlateSmoothersWithKnotsNum, _parms, _parms._num_knots_tp, _parms._M);
}
addGAM2Train(); // add GAM columns to training frame
return buildGamFrame(_parms, _train, _gamFrameKeysCenter, _foldColumn); // add gam cols to _train
}
// This class generate the thin plate regression smoothers as denoted in GamThinPlateRegressionH2O.pdf
public class ThinPlateRegressionSmootherWithKnots extends RecursiveAction {
final Frame _predictVec;
final int _numKnots;
final int _numKnotsM1;
final int _numKnotsMM; // store k-M
final int _splineType;
final boolean _savePenaltyMat;
final double[][] _knots;
final GAMParameters _parms;
final int _gamColIndex;
final int _thinPlateGamColIndex;
final int _numPred; // number of predictors (d)
final int _M;
public ThinPlateRegressionSmootherWithKnots(Frame predV, GAMParameters parms, int gamColIndex, double[][] knots,
int thinPlateInd) {
_predictVec = predV;
_knots = knots;
_numKnots = parms._num_knots_sorted[gamColIndex];
_numKnotsM1 = _numKnots-1;
_parms = parms;
_splineType = _parms._bs_sorted[gamColIndex];
_gamColIndex = gamColIndex;
_thinPlateGamColIndex = thinPlateInd;
_savePenaltyMat = _parms._savePenaltyMat;
_numPred = parms._gam_columns_sorted[gamColIndex].length;
_M = _parms._M[_thinPlateGamColIndex];
_numKnotsMM = _numKnots-_M;
}
@Override
protected void compute() {
double[] rawColMeans = new double[_numPred];
double[] oneOverColStd = new double[_numPred];
for (int colInd = 0; colInd < _numPred; colInd++) {
rawColMeans[colInd] = _predictVec.vec(colInd).mean();
oneOverColStd[colInd] = 1.0/_predictVec.vec(colInd).sigma(); // std
}
System.arraycopy(rawColMeans, 0, _gamColMeansRaw[_thinPlateGamColIndex], 0, rawColMeans.length);
System.arraycopy(oneOverColStd, 0, _oneOGamColStd[_thinPlateGamColIndex], 0, oneOverColStd.length);
ThinPlateDistanceWithKnots distanceMeasure =
new ThinPlateDistanceWithKnots(_knots, _numPred, oneOverColStd,
_parms._standardize_tp_gam_cols).doAll(_numKnots, Vec.T_NUM, _predictVec); // Xnmd in 3.1
List polyBasisDegree = findPolyBasis(_numPred, calculatem(_numPred));// polynomial basis lists in 3.2
int[][] polyBasisArray = convertList2Array(polyBasisDegree, _M, _numPred);
copy2DArray(polyBasisArray, _allPolyBasisList[_thinPlateGamColIndex]);
String colNameStub = genThinPlateNameStart(_parms, _gamColIndex); // gam column names before processing
String[] gamColNames = generateGamColNamesThinPlateKnots(_gamColIndex, _parms, polyBasisArray, colNameStub);
System.arraycopy(gamColNames, 0, _gamColNames[_gamColIndex], 0, gamColNames.length);
String[] distanceColNames = extractColNames(gamColNames, 0, 0, _numKnots);
String[] polyNames = extractColNames(gamColNames, _numKnots, 0, _M);
Frame thinPlateFrame = distanceMeasure.outputFrame(Key.make(), distanceColNames, null);
for (int index = 0; index < _numKnots; index++)
_gamColMeans[_gamColIndex][index] = thinPlateFrame.vec(index).mean();
double[][] starT = generateStarT(_knots, polyBasisDegree, rawColMeans, oneOverColStd,
_parms._standardize_tp_gam_cols); // generate T* in 3.2.3
double[][] qmat = generateQR(starT);
double[][] penaltyMat = distanceMeasure.generatePenalty(qmat); // penalty matrix 3.1.1
double[][] zCST = generateOrthogonalComplement(qmat, starT, _numKnotsMM, _parms._seed);
copy2DArray(zCST, _zTransposeCS[_thinPlateGamColIndex]);
ThinPlatePolynomialWithKnots thinPlatePoly = new ThinPlatePolynomialWithKnots(_numPred,
polyBasisArray, rawColMeans, oneOverColStd,
_parms._standardize_tp_gam_cols).doAll(_M, Vec.T_NUM, _predictVec);// generate polynomial basis T in 3.2
Frame thinPlatePolyBasis = thinPlatePoly.outputFrame(null, polyNames, null);
for (int index = 0; index < _M; index++) // calculate gamified column means
_gamColMeans[_gamColIndex][index+_numKnots] = thinPlatePolyBasis.vec(index).mean();
thinPlateFrame = ThinPlateDistanceWithKnots.applyTransform(thinPlateFrame, colNameStub
+"TPKnots_", _parms, zCST, _numKnotsMM); // generate Xcs as in 3.3
thinPlateFrame.add(thinPlatePolyBasis.names(), thinPlatePolyBasis.removeAll()); // concatenate Xcs and T
double[][] ztranspose = generateZTransp(thinPlateFrame, _numKnots); // generate Z for centering as in 3.4
copy2DArray(ztranspose, _zTranspose[_gamColIndex]);
double[][] penaltyMatCS = ArrayUtils.multArrArr(ArrayUtils.multArrArr(zCST, penaltyMat),
ArrayUtils.transpose(zCST)); // transform penalty matrix to transpose(Zcs)*Xnmd*Zcs, 3.3
if (_parms._scale_tp_penalty_mat) { // R does this scaling of penalty matrix. I left it to users to choose
ScaleTPPenalty scaleTPPenaltyCS = new ScaleTPPenalty(penaltyMatCS, thinPlateFrame).doAll(thinPlateFrame);
_penaltyScale[_gamColIndex] = scaleTPPenaltyCS._s_scale;
penaltyMatCS = scaleTPPenaltyCS._penaltyMat;
}
double[][] expandPenaltyCS = expandArray(penaltyMatCS, _numKnots); // used for penalty matrix
if (_savePenaltyMat) { // save intermediate steps for debugging
copy2DArray(penaltyMat, _penaltyMat[_gamColIndex]);
copy2DArray(starT, _starT[_thinPlateGamColIndex]);
copy2DArray(penaltyMatCS, _penaltyMatCS[_thinPlateGamColIndex]);
}
double[][] penaltyCenter = ArrayUtils.multArrArr(ArrayUtils.multArrArr(ztranspose, expandPenaltyCS),
ArrayUtils.transpose(ztranspose));
copy2DArray(penaltyCenter, _penaltyMatCenter[_gamColIndex]);
thinPlateFrame = ThinPlateDistanceWithKnots.applyTransform(thinPlateFrame, colNameStub+"center",
_parms, ztranspose, _numKnotsM1); // generate Xz as in 3.4
_gamFrameKeysCenter[_gamColIndex] = thinPlateFrame._key;
DKV.put(thinPlateFrame);
System.arraycopy(thinPlateFrame.names(), 0, _gamColNamesCenter[_gamColIndex], 0, _numKnotsM1);
}
}
public class ISplineSmoother extends RecursiveAction {
final Frame _predictVec;
final int _numKnots; // not counting knot duplication here
final int _order;
final double[] _knots; // not counting knot duplication here
final boolean _savePenaltyMat;
final String[] _newColNames;
final int _gamColIndex; // gam column order from user input
final int _singlePredSplineInd; // gam column index after moving tp to the back
final int _splineType;
public ISplineSmoother(Frame gamPred, GAMParameters parms, int gamColIndex, String[] gamColNames, double[] knots,
int singlePredInd) {
_predictVec = gamPred;
_numKnots = parms._num_knots_sorted[gamColIndex];
_knots = knots;
_order = parms._spline_orders_sorted[gamColIndex];
_savePenaltyMat = parms._savePenaltyMat;
_newColNames = gamColNames;
_gamColIndex = gamColIndex;
_singlePredSplineInd = singlePredInd;
_splineType = parms._bs_sorted[gamColIndex];
}
@Override
protected void compute() {
// generate GAM basis functions
int order = _parms._spline_orders_sorted[_gamColIndex];
int numBasis = _knots.length+order-2;
int totKnots = numBasis + order;
GenISplineGamOneColumn oneGAMCol = new GenISplineGamOneColumn(_parms, _knots, _gamColIndex, _predictVec,
numBasis, totKnots);
oneGAMCol.doAll(oneGAMCol._numBasis, Vec.T_NUM, _predictVec);
if (_savePenaltyMat) {
copy2DArray(oneGAMCol._penaltyMat, _penaltyMat[_gamColIndex]);
_penaltyScale[_gamColIndex] = oneGAMCol._s_scale;
}
// extract generated gam columns
Frame oneGamifiedColumn = oneGAMCol.outputFrame(Key.make(), _newColNames, null);
for (int index=0; index 0 && !_parms._betaConstraintsOff) { // set up coefficient constraints >= 0 for I-splines
Frame constraintF = genConstraints();
Scope.track(constraintF);
if (_parms._beta_constraints != null) {
DKV.put(constraintF);
Frame origConstraints = DKV.getGet(_parms._beta_constraints);
String tree = "(rbind "+origConstraints.getKey().toString()+" "+constraintF.getKey().toString()+" )";
Val val = Rapids.exec(tree);
Frame newConstraints = new Frame(val.getFrame());
DKV.put(newConstraints);
Scope.track(newConstraints);
_parms._beta_constraints = newConstraints._key;
} else {
_parms._beta_constraints = constraintF._key;
DKV.put(constraintF);
}
}
}
/**
* For all gamified columns with I-spline, put in beta constraints to make sure the coefficients are non-negative.
* @return
*/
public Frame genConstraints() {
int numGamCols = _parms._gam_columns.length;
String[] colNames = new String[]{"names", "lower_bounds", "upper_bounds"};
Vec.VectorGroup vg = Vec.VectorGroup.VG_LEN1;
List gamColNames = new ArrayList<>();
for (int index=0; index 0) {
String[] constraintNames = gamColNames.stream().toArray(String[]::new);
double[] lowerBounds = new double[numConstraints];
double[] upperBounds = new double[numConstraints];
for (int index = 0; index < numConstraints; index++) {
upperBounds[index] = Double.MAX_VALUE;
lowerBounds[index] = 0.0;
}
Vec gamNames = Scope.track(Vec.makeVec(constraintNames, vg.addVec()));
Vec lowBounds = Scope.track(Vec.makeVec(lowerBounds, vg.addVec()));
Vec upBounds = Scope.track(Vec.makeVec(upperBounds, vg.addVec()));
return new Frame(Key.make(), colNames, new Vec[]{gamNames, lowBounds, upBounds});
}
return null;
}
void verifyGamTransformedFrame(Frame gamTransformed) {
final int numGamFrame = _parms._gam_columns.length;
for (int findex = 0; findex < numGamFrame; findex++) {
final int numGamCols = _gamColNamesCenter[findex].length;
for (int index = 0; index < numGamCols; index++) {
if (gamTransformed.vec(_gamColNamesCenter[findex][index]).isConst())
error(_gamColNamesCenter[findex][index], "gam column transformation generated constant columns" +
" for " + _parms._gam_columns[findex]);
}
}
}
@Override
public void computeImpl() {
init(true);
if (error_count() > 0) // if something goes wrong, let's throw a fit
throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(GAM.this);
// add gamified columns to training frame
Frame newTFrame = new Frame(rebalance(adaptTrain(), false, _result+".temporary.train"));
verifyGamTransformedFrame(newTFrame);
if (error_count() > 0) // if something goes wrong during gam transformation, let's throw a fit again!
throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(GAM.this);
if (valid() != null) // transform the validation frame if present
_valid = rebalance(adaptValidFrame(_parms.valid(), _valid, _parms, _gamColNamesCenter, _binvD,
_zTranspose, _knots, _zTransposeCS, _allPolyBasisList, _gamColMeansRaw, _oneOGamColStd, _cubicSplineNum),
false, _result+".temporary.valid");
DKV.put(newTFrame); // This one will cause deleted vectors if add to Scope.track
Frame newValidFrame = _valid == null ? null : new Frame(_valid);
if (newValidFrame != null) {
DKV.put(newValidFrame);
}
_job.update(0, "Initializing model training");
buildModel(newTFrame, newValidFrame); // build gam model
}
public final void buildModel(Frame newTFrame, Frame newValidFrame) {
GAMModel model = null;
final IcedHashSet> validKeys = new IcedHashSet<>();
try {
_job.update(0, "Adding GAM columns to training dataset...");
if (_foldColumn != null)
_parms._fold_column = _foldColumn;
_dinfo = new DataInfo(_train.clone(), _valid, 1, _parms._use_all_factor_levels
|| _parms._lambda_search, _parms._standardize ?
DataInfo.TransformType.STANDARDIZE : DataInfo.TransformType.NONE, DataInfo.TransformType.NONE,
_parms.missingValuesHandling() == GLMParameters.MissingValuesHandling.Skip,
_parms.missingValuesHandling() == GLMParameters.MissingValuesHandling.MeanImputation
|| _parms.missingValuesHandling() == GLMParameters.MissingValuesHandling.PlugValues,
_parms.makeImputer(), false, hasWeightCol(), hasOffsetCol(), hasFoldCol(),
_parms.interactionSpec());
DKV.put(_dinfo._key, _dinfo);
if (_foldColumn != null)
_parms._fold_column = null;
model = new GAMModel(dest(), _parms, new GAMModel.GAMModelOutput(GAM.this, _dinfo));
model.write_lock(_job);
if (_parms._keep_gam_cols) { // save gam column keys
model._output._gamTransformedTrainCenter = newTFrame._key;
}
_job.update(1, "calling GLM to build GAM model...");
GLMModel glmModel = buildGLMModel(_parms, newTFrame, newValidFrame); // obtained GLM model
if (model.evalAutoParamsEnabled) {
model.initActualParamValuesAfterGlmCreation();
}
Scope.track_generic(glmModel);
_job.update(0, "Building out GAM model...");
model.update(_job);
fillOutGAMModel(glmModel, model); // build up GAM model by copying over results in glmModel
// build GAM Model Metrics
_job.update(0, "Scoring training frame");
scoreGenModelMetrics(model, glmModel,train(), true); // score training dataset and generate model metrics
if (valid() != null) {
scoreGenModelMetrics(model, glmModel, valid(), false); // score validation dataset and generate model metrics
}
} catch(Gram.NonSPDMatrixException exception) {
throw new Gram.NonSPDMatrixException("Consider enable lambda_search, decrease scale parameter value for TP " +
"smoothers, \ndisable scaling for TP penalty matrics, or not use thin plate regression smoothers at all.");
} finally {
try {
final List keep = new ArrayList<>();
if (model != null) {
if (_parms._keep_gam_cols) {
keepFrameKeys(keep, newTFrame._key);
} else {
DKV.remove(newTFrame._key);
}
if (_cvOn) {
if (_parms._keep_cross_validation_predictions) {
keepFrameKeys(keep, model._output._cross_validation_holdout_predictions_frame_id);
for (int fInd = 0; fInd < _glmNFolds; fInd++)
keepFrameKeys(keep, model._output._cross_validation_predictions[fInd]);
}
if (_parms._keep_cross_validation_fold_assignment)
keepFrameKeys(keep, model._output._cross_validation_fold_assignment_frame_id);
}
}
if (_dinfo != null)
_dinfo.remove();
if (newValidFrame != null && validKeys != null) {
keepFrameKeys(keep, newValidFrame._key); // save valid frame keys for scoring later
validKeys.addIfAbsent(newValidFrame._key); // save valid frame keys from folds to remove later
model._validKeys = validKeys; // move valid keys here to model._validKeys to be removed later
}
Scope.untrack(keep.toArray(new Key[keep.size()]));
} finally {
// Make sure Model is unlocked, as if an exception is thrown, the `ModelBuilder` expects the underlying model to be unlocked.
model.update(_job);
model.unlock(_job);
}
}
}
/**
* This part will perform scoring and generate the model metrics for training data and validation data if
* provided by user.
*
* @param model
* @param scoreFrame
* @param forTraining true for training dataset and false for validation dataset
*/
private void scoreGenModelMetrics(GAMModel model, GLMModel glmModel, Frame scoreFrame, boolean forTraining) {
Frame scoringTrain = new Frame(scoreFrame);
model.adaptTestForTrain(scoringTrain, true, true);
Frame scoredResult = model.score(scoringTrain);
scoredResult.delete();
ModelMetrics glmMetrics = forTraining ? glmModel._output._training_metrics : glmModel._output._validation_metrics;
if (forTraining) {
model._output.copyMetrics(model, scoringTrain, forTraining, glmMetrics);
Log.info("GAM[dest=" + dest() + "]" + model._output._training_metrics.toString());
} else {
model._output.copyMetrics(model, scoringTrain, forTraining, glmMetrics);
Log.info("GAM[dest=" + dest() + "]" + model._output._validation_metrics.toString());
}
}
GLMModel buildGLMModel(GAMParameters parms, Frame trainData, Frame validFrame) {
GLMParameters glmParam = copyGAMParams2GLMParams(parms, trainData, validFrame); // copy parameter from GAM to GLM
int numGamCols = _parms._gam_columns.length;
for (int find = 0; find < numGamCols; find++) {
if ((_parms._scale != null) && (_parms._scale[find] != 1.0))
_penaltyMatCenter[find] = ArrayUtils.mult(_penaltyMatCenter[find], _parms._scale[find]);
}
glmParam._glmType = gam;
if (_foldColumn == null) {
glmParam._nfolds = _glmNFolds;
} else {
glmParam._fold_column = _foldColumn;
glmParam._nfolds = 0;
}
glmParam._fold_assignment = _foldAssignment;
return new GLM(glmParam, _penaltyMatCenter, _gamColNamesCenter).trainModel().get();
}
void fillOutGAMModel(GLMModel glm, GAMModel model) {
model._gamColNamesNoCentering = _gamColNames; // copy over gam column names
model._gamColNames = _gamColNamesCenter;
model._output._gamColNames = _gamColNamesCenter;
model._output._zTranspose = _zTranspose;
model._output._zTransposeCS = _zTransposeCS;
model._output._allPolyBasisList = _allPolyBasisList;
model._gamFrameKeysCenter = _gamFrameKeysCenter;
model._nclass = _nclass;
model._output._binvD = _binvD;
model._output._knots = _knots;
model._output._numKnots = _numKnots;
model._cubicSplineNum = _cubicSplineNum;
model._iSplineNum = _iSplineNum;
model._thinPlateSmoothersWithKnotsNum = _thinPlateSmoothersWithKnotsNum;
model._output._gamColMeansRaw = _gamColMeansRaw;
model._output._oneOGamColStd = _oneOGamColStd;
// extract and store best_alpha/lambda/devianceTrain/devianceValid from best submodel of GLM model
model._output._best_alpha = glm._output.getSubmodel(glm._output._selected_submodel_idx).alpha_value;
model._output._best_lambda = glm._output.getSubmodel(glm._output._selected_submodel_idx).lambda_value;
model._output._devianceTrain = glm._output.getSubmodel(glm._output._selected_submodel_idx).devianceTrain;
model._output._devianceValid = glm._output.getSubmodel(glm._output._selected_submodel_idx).devianceValid;
model._gamColMeans = flat(_gamColMeans);
if (_parms._lambda == null) // copy over lambdas used
_parms._lambda = glm._parms._lambda.clone();
if (_parms._keep_gam_cols)
model._output._gam_transformed_center_key = model._output._gamTransformedTrainCenter.toString();
if (_parms._savePenaltyMat) {
model._output._penaltyMatricesCenter = _penaltyMatCenter;
model._output._penaltyMatrices = _penaltyMat;
model._output._penaltyScale = _penaltyScale;
if (_thinPlateSmoothersWithKnotsNum > 0) {
model._output._penaltyMatCS = _penaltyMatCS;
model._output._starT = _starT;
}
}
copyGLMCoeffs(glm, model, _parms, nclasses()); // copy over coefficient names and generate coefficients as beta = z*GLM_beta
copyGLMtoGAMModel(model, glm, _parms, valid()!=null); // copy over fields from glm model to gam model
if (_cvOn) {
_parms._betaConstraintsOff = true;
copyCVGLMtoGAMModel(model, glm, _parms, _foldColumn); // copy over fields from cross-validation
_parms._betaConstraintsOff = false;
_parms._nfolds = _foldColumn == null ? _glmNFolds : 0; // restore original cross-validation parameter values
_parms._fold_assignment = _foldAssignment;
_parms._fold_column = _foldColumn;
}
}
public GLMParameters copyGAMParams2GLMParams(GAMParameters parms, Frame trainData, Frame valid) {
GLMParameters glmParam = new GLMParameters();
List gamOnlyList = Arrays.asList(
"_num_knots", "_gam_columns", "_bs", "_scale", "_train",
"_saveZMatrix", "_saveGamCols", "_savePenaltyMat"
);
Field[] field1 = GAMParameters.class.getDeclaredFields();
setParamField(parms, glmParam, false, field1, gamOnlyList);
Field[] field2 = Model.Parameters.class.getDeclaredFields();
setParamField(parms, glmParam, true, field2, gamOnlyList);
glmParam._train = trainData._key;
glmParam._valid = valid==null?null:valid._key;
glmParam._nfolds = _glmNFolds; // will do cv in GLM and not in GAM
glmParam._fold_assignment = _foldAssignment;
return glmParam;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy