hex.generic.GenericModelOutput Maven / Gradle / Ivy
package hex.generic;
import hex.*;
import hex.genmodel.attributes.*;
import hex.genmodel.attributes.metrics.*;
import hex.genmodel.descriptor.ModelDescriptor;
import hex.tree.isofor.ModelMetricsAnomaly;
import water.util.Log;
import water.util.TwoDimTable;
import java.lang.reflect.Field;
import java.util.HashMap;
import java.util.Map;
public class GenericModelOutput extends Model.Output {
public final String _original_model_identifier;
public final String _original_model_full_name;
public final ModelCategory _modelCategory;
public final int _nfeatures;
public final double _defaultThreshold;
public TwoDimTable _variable_importances;
public GenericModelOutput(final ModelDescriptor modelDescriptor) {
_isSupervised = modelDescriptor.isSupervised();
_domains = modelDescriptor.scoringDomains();
_origDomains = modelDescriptor.getOrigDomains();
_hasOffset = modelDescriptor.offsetColumn() != null;
_hasWeights = modelDescriptor.weightsColumn() != null;
_hasFold = modelDescriptor.foldColumn() != null;
_modelClassDist = modelDescriptor.modelClassDist();
_priorClassDist = modelDescriptor.priorClassDist();
_names = modelDescriptor.columnNames();
_origNames = modelDescriptor.getOrigNames();
_modelCategory = modelDescriptor.getModelCategory();
_nfeatures = modelDescriptor.nfeatures();
_defaultThreshold = modelDescriptor.defaultThreshold();
_original_model_identifier = modelDescriptor.algoName();
_original_model_full_name = modelDescriptor.algoFullName();
}
public GenericModelOutput(final ModelDescriptor modelDescriptor, final ModelAttributes modelAttributes,
final Table[] reproducibilityInformation) {
this(modelDescriptor);
if (modelAttributes != null) {
_model_summary = convertTable(modelAttributes.getModelSummary());
_cross_validation_metrics_summary = convertTable(modelAttributes.getCrossValidationMetricsSummary());
if (modelAttributes instanceof SharedTreeModelAttributes) {
_variable_importances = convertVariableImportances(((SharedTreeModelAttributes) modelAttributes).getVariableImportances());
} else if (modelAttributes instanceof DeepLearningModelAttributes) {
_variable_importances = convertVariableImportances(((DeepLearningModelAttributes) modelAttributes).getVariableImportances());
} else if (modelAttributes instanceof ModelAttributesGLM) {
_variable_importances = convertVariableImportances(((ModelAttributesGLM) modelAttributes).getVariableImportances());
} else {
_variable_importances = null;
}
convertMetrics(modelAttributes, modelDescriptor);
_scoring_history = convertTable(modelAttributes.getScoringHistory());
}
if (reproducibilityInformation != null) {
_reproducibility_information_table = convertTables(reproducibilityInformation);
}
}
private void convertMetrics(final ModelAttributes modelAttributes, final ModelDescriptor modelDescriptor) {
// Training metrics
if (modelAttributes.getTrainingMetrics() != null) {
_training_metrics = convertModelMetrics(modelAttributes.getTrainingMetrics(), modelDescriptor, modelAttributes);
}
if (modelAttributes.getValidationMetrics() != null) {
_validation_metrics = (ModelMetrics) convertObjects(modelAttributes.getValidationMetrics(),
convertModelMetrics(modelAttributes.getValidationMetrics(), modelDescriptor, modelAttributes));
}
if (modelAttributes.getCrossValidationMetrics() != null) {
_cross_validation_metrics = (ModelMetrics) convertObjects(modelAttributes.getCrossValidationMetrics(),
convertModelMetrics(modelAttributes.getCrossValidationMetrics(), modelDescriptor, modelAttributes));
}
}
private ModelMetrics convertModelMetrics(final MojoModelMetrics mojoMetrics, final ModelDescriptor modelDescriptor,
final ModelAttributes modelAttributes) {
final ModelCategory modelCategory = modelDescriptor.getModelCategory();
switch (modelCategory) {
case Binomial:
assert mojoMetrics instanceof MojoModelMetricsBinomial;
final MojoModelMetricsBinomial binomial = (MojoModelMetricsBinomial) mojoMetrics;
final AUC2 auc = AUC2.emptyAUC();
auc._auc = binomial._auc;
auc._pr_auc = binomial._pr_auc;
auc._gini = binomial._gini;
if (mojoMetrics instanceof MojoModelMetricsBinomialGLM) {
assert modelAttributes instanceof ModelAttributesGLM;
final ModelAttributesGLM modelAttributesGLM = (ModelAttributesGLM) modelAttributes;
final MojoModelMetricsBinomialGLM glmBinomial = (MojoModelMetricsBinomialGLM) binomial;
return new ModelMetricsBinomialGLMGeneric(null, null, mojoMetrics._nobs, mojoMetrics._MSE,
_domains[_domains.length - 1], glmBinomial._sigma,
auc, binomial._logloss, convertTable(binomial._gains_lift_table),
customMetric(mojoMetrics), binomial._mean_per_class_error,
convertTable(binomial._thresholds_and_metric_scores), convertTable(binomial._max_criteria_and_metric_scores),
convertTable(binomial._confusion_matrix), glmBinomial._nullDegressOfFreedom, glmBinomial._residualDegressOfFreedom,
glmBinomial._resDev, glmBinomial._nullDev, glmBinomial._AIC, convertTable(modelAttributesGLM._coefficients_table),
glmBinomial._r2, glmBinomial._description);
} else {
return new ModelMetricsBinomialGeneric(null, null, mojoMetrics._nobs, mojoMetrics._MSE,
_domains[_domains.length - 1], binomial._sigma,
auc, binomial._logloss, convertTable(binomial._gains_lift_table),
customMetric(mojoMetrics), binomial._mean_per_class_error,
convertTable(binomial._thresholds_and_metric_scores), convertTable(binomial._max_criteria_and_metric_scores),
convertTable(binomial._confusion_matrix), binomial._r2, binomial._description);
}
case Multinomial:
assert mojoMetrics instanceof MojoModelMetricsMultinomial;
if (mojoMetrics instanceof MojoModelMetricsMultinomialGLM) {
assert modelAttributes instanceof ModelAttributesGLM;
final ModelAttributesGLM modelAttributesGLM = (ModelAttributesGLM) modelAttributes;
modelAttributesGLM.getModelParameters();
final MojoModelMetricsMultinomialGLM glmMultinomial = (MojoModelMetricsMultinomialGLM) mojoMetrics;
return new ModelMetricsMultinomialGLMGeneric(null, null, mojoMetrics._nobs, mojoMetrics._MSE,
_domains[_domains.length - 1], glmMultinomial._sigma,
convertTable(glmMultinomial._confusion_matrix), convertTable(glmMultinomial._hit_ratios),
glmMultinomial._logloss, customMetric(mojoMetrics),
glmMultinomial._mean_per_class_error, glmMultinomial._nullDegressOfFreedom, glmMultinomial._residualDegressOfFreedom,
glmMultinomial._resDev, glmMultinomial._nullDev, glmMultinomial._AIC, convertTable(modelAttributesGLM._coefficients_table),
glmMultinomial._r2, convertTable(glmMultinomial._multinomial_auc), convertTable(glmMultinomial._multinomial_aucpr),
MultinomialAucType.valueOf((String)modelAttributes.getParameterValueByName("auc_type")), glmMultinomial._description);
} else {
final MojoModelMetricsMultinomial multinomial = (MojoModelMetricsMultinomial) mojoMetrics;
return new ModelMetricsMultinomialGeneric(null, null, mojoMetrics._nobs, mojoMetrics._MSE,
_domains[_domains.length - 1], multinomial._sigma,
convertTable(multinomial._confusion_matrix), convertTable(multinomial._hit_ratios),
multinomial._logloss, customMetric(mojoMetrics),
multinomial._mean_per_class_error, multinomial._r2, convertTable(multinomial._multinomial_auc), convertTable(multinomial._multinomial_aucpr),
MultinomialAucType.valueOf((String)modelAttributes.getParameterValueByName("auc_type")), multinomial._description);
}
case Regression:
assert mojoMetrics instanceof MojoModelMetricsRegression;
if (mojoMetrics instanceof MojoModelMetricsRegressionGLM) {
assert modelAttributes instanceof ModelAttributesGLM;
final ModelAttributesGLM modelAttributesGLM = (ModelAttributesGLM) modelAttributes;
final MojoModelMetricsRegressionGLM regressionGLM = (MojoModelMetricsRegressionGLM) mojoMetrics;
return new ModelMetricsRegressionGLMGeneric(null, null, regressionGLM._nobs, regressionGLM._MSE,
regressionGLM._sigma, regressionGLM._mae, regressionGLM._root_mean_squared_log_error, regressionGLM._mean_residual_deviance,
customMetric(regressionGLM), regressionGLM._r2,
regressionGLM._nullDegressOfFreedom, regressionGLM._residualDegressOfFreedom, regressionGLM._resDev,
regressionGLM._nullDev, regressionGLM._AIC, convertTable(modelAttributesGLM._coefficients_table));
} else {
MojoModelMetricsRegression metricsRegression = (MojoModelMetricsRegression) mojoMetrics;
return new ModelMetricsRegressionGeneric(null, null, metricsRegression._nobs, metricsRegression._MSE,
metricsRegression._sigma, metricsRegression._mae, metricsRegression._root_mean_squared_log_error, metricsRegression._mean_residual_deviance,
customMetric(mojoMetrics), mojoMetrics._description);
}
case AnomalyDetection:
assert mojoMetrics instanceof MojoModelMetricsAnomaly;
// There is no need to introduce new Generic alternatives to the original metric objects at the moment.
// The total values can be simply calculated. The extra calculation time is negligible.
MojoModelMetricsAnomaly metricsAnomaly = (MojoModelMetricsAnomaly) mojoMetrics;
return new ModelMetricsAnomaly(null, null, customMetric(mojoMetrics),
mojoMetrics._nobs, metricsAnomaly._mean_score * metricsAnomaly._nobs, metricsAnomaly._mean_normalized_score * metricsAnomaly._nobs,
metricsAnomaly._description);
case Ordinal:
assert mojoMetrics instanceof MojoModelMetricsOrdinal;
if (mojoMetrics instanceof MojoModelMetricsOrdinalGLM) {
assert modelAttributes instanceof ModelAttributesGLM;
final ModelAttributesGLM modelAttributesGLM = (ModelAttributesGLM) modelAttributes;
MojoModelMetricsOrdinalGLM ordinalMetrics = (MojoModelMetricsOrdinalGLM) mojoMetrics;
return new ModelMetricsOrdinalGLMGeneric(null, null, ordinalMetrics._nobs, ordinalMetrics._MSE,
ordinalMetrics._domain, ordinalMetrics._sigma, convertTable(ordinalMetrics._cm), ordinalMetrics._hit_ratios,
ordinalMetrics._logloss, customMetric(ordinalMetrics),
ordinalMetrics._r2, ordinalMetrics._nullDegressOfFreedom, ordinalMetrics._residualDegressOfFreedom, ordinalMetrics._resDev,
ordinalMetrics._nullDev, ordinalMetrics._AIC, convertTable(modelAttributesGLM._coefficients_table),
convertTable(ordinalMetrics._hit_ratio_table), ordinalMetrics._mean_per_class_error, ordinalMetrics._description);
} else {
MojoModelMetricsOrdinal ordinalMetrics = (MojoModelMetricsOrdinal) mojoMetrics;
return new ModelMetricsOrdinalGeneric(null, null, ordinalMetrics._nobs, ordinalMetrics._MSE,
ordinalMetrics._domain, ordinalMetrics._sigma, convertTable(ordinalMetrics._cm), ordinalMetrics._hit_ratios,
ordinalMetrics._logloss, customMetric(ordinalMetrics),
convertTable(ordinalMetrics._hit_ratio_table), ordinalMetrics._mean_per_class_error, ordinalMetrics._description);
}
case CoxPH:
assert mojoMetrics instanceof MojoModelMetricsRegressionCoxPH;
MojoModelMetricsRegressionCoxPH metricsCoxPH = (MojoModelMetricsRegressionCoxPH) mojoMetrics;
return new ModelMetricsRegressionCoxPH(null, null, metricsCoxPH._nobs, metricsCoxPH._MSE,
metricsCoxPH._sigma, metricsCoxPH._mae, metricsCoxPH._root_mean_squared_log_error, metricsCoxPH._mean_residual_deviance,
customMetric(mojoMetrics),
metricsCoxPH._concordance, metricsCoxPH._concordant, metricsCoxPH._discordant, metricsCoxPH._tied_y);
case Unknown:
case Clustering:
case AutoEncoder:
case DimReduction:
case WordEmbedding:
default:
return new ModelMetrics(null, null, mojoMetrics._nobs, mojoMetrics._MSE, mojoMetrics._description,
customMetric(mojoMetrics));
}
}
private static CustomMetric customMetric(MojoModelMetrics mojoModelMetrics) {
if (mojoModelMetrics._custom_metric_name == null)
return null;
return new CustomMetric(mojoModelMetrics._custom_metric_name, mojoModelMetrics._custom_metric_value);
}
@Override
public double defaultThreshold() {
return _defaultThreshold;
}
@Override
public ModelCategory getModelCategory() {
return _modelCategory; // Might be calculated as well, but the information in MOJO is the one to display.
}
@Override
public int nfeatures() {
return _nfeatures;
}
private static Object convertObjects(final Object source, final Object target) {
final Class> targetClass = target.getClass();
final Field[] targetDeclaredFields = targetClass.getFields();
final Class> sourceClass = source.getClass();
final Field[] sourceDeclaredFields = sourceClass.getFields();
// Create a map for faster search afterwards
final Map sourceFieldMap = new HashMap(sourceDeclaredFields.length);
for (Field sourceField : sourceDeclaredFields) {
sourceFieldMap.put(sourceField.getName(), sourceField);
}
for (int i = 0; i < targetDeclaredFields.length; i++) {
final Field targetField = targetDeclaredFields[i];
final String targetFieldName = targetField.getName();
final Field sourceField = sourceFieldMap.get(targetFieldName);
if(sourceField == null) {
Log.debug(String.format("Field '%s' not found in the source object. Ignoring.", targetFieldName));
continue;
}
final boolean targetAccessible = targetField.isAccessible();
final boolean sourceAccessible = sourceField.isAccessible();
try{
targetField.setAccessible(true);
sourceField.setAccessible(true);
if(targetField.getType().isAssignableFrom(sourceField.getType())){
targetField.set(target, sourceField.get(source));
}
} catch (IllegalAccessException e) {
Log.err(e);
continue;
} finally {
targetField.setAccessible(targetAccessible);
sourceField.setAccessible(sourceAccessible);
}
}
return target;
}
private static TwoDimTable convertVariableImportances(final VariableImportances variableImportances) {
if(variableImportances == null) return null;
TwoDimTable varImps = ModelMetrics.calcVarImp(variableImportances._importances, variableImportances._variables);
return varImps;
}
private static TwoDimTable[] convertTables(final Table[] inputTables) {
if (inputTables == null)
return null;
TwoDimTable[] tables = new TwoDimTable[inputTables.length];
for (int i = 0; i < inputTables.length; i++) {
tables[i] = convertTable(inputTables[i]);
}
return tables;
}
private static TwoDimTable convertTable(final Table convertedTable){
if(convertedTable == null) return null;
final TwoDimTable table = new TwoDimTable(convertedTable.getTableHeader(), convertedTable.getTableDescription(),
convertedTable.getRowHeaders(), convertedTable.getColHeaders(), convertedTable.getColTypesString(),
convertedTable.getColumnFormats(), convertedTable.getColHeaderForRowHeaders());
for (int i = 0; i < convertedTable.columns(); i++) {
for (int j = 0; j < convertedTable.rows(); j++) {
table.set(j, i, convertedTable.getCell(i,j));
}
}
return table;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy