hex.tree.isofor.IsolationForest Maven / Gradle / Ivy
package hex.tree.isofor;
import hex.ModelCategory;
import hex.ModelMetricsBinomial;
import hex.ScoreKeeper;
import hex.genmodel.utils.DistributionFamily;
import hex.quantile.Quantile;
import hex.tree.*;
import hex.tree.DTree.DecidedNode;
import hex.tree.DTree.LeafNode;
import hex.tree.DTree.UndecidedNode;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import water.Iced;
import water.Job;
import water.Key;
import water.MRTask;
import water.fvec.Chunk;
import water.fvec.Frame;
import water.fvec.Vec;
import water.util.PrettyPrint;
import water.util.TwoDimTable;
import java.util.*;
import static water.util.RandomUtils.getRNG;
import static hex.tree.isofor.IsolationForestModel.IsolationForestParameters;
import static hex.tree.isofor.IsolationForestModel.IsolationForestOutput;
/**
* Isolation Forest
*/
public class IsolationForest extends SharedTree {
@Override public ModelCategory[] can_build() {
return new ModelCategory[]{
ModelCategory.AnomalyDetection
};
}
@Override public BuilderVisibility builderVisibility() {
return BuilderVisibility.Stable;
}
// Called from an http request
public IsolationForest(IsolationForestParameters parms ) { super(parms ); init(false); }
public IsolationForest(IsolationForestParameters parms, Key key) { super(parms, key); init(false); }
public IsolationForest(IsolationForestParameters parms, Job job ) { super(parms, job); init(false); }
public IsolationForest(boolean startup_once) { super(new IsolationForestParameters(), startup_once); }
@Override protected Driver trainModelImpl() { return new IsolationForestDriver(); }
@Override public boolean scoreZeroTrees() { return false; }
@Override public boolean isSupervised() { return false; }
@Override public boolean isResponseOptional() { return true; }
@Override protected ScoreKeeper.ProblemType getProblemType() { return ScoreKeeper.ProblemType.anomaly_detection; }
private transient VarSplits _var_splits;
@Override public void init(boolean expensive) {
super.init(expensive);
// Initialize local variables
if( _parms._mtries < 1 && _parms._mtries != -1 && _parms._mtries != -2 )
error("_mtries", "mtries must be -1 (converted to sqrt(features)) or -2 (All features) or >= 1 but it is " + _parms._mtries);
if( _train != null ) {
int ncols = _train.numCols();
if( _parms._mtries != -1 && _parms._mtries != -2 && !(1 <= _parms._mtries && _parms._mtries <= ncols))
error("_mtries","Computed mtries should be -1 or -2 or in interval [1," + ncols + "] but it is " + _parms._mtries);
}
if (_parms._distribution != DistributionFamily.AUTO && _parms._distribution != DistributionFamily.gaussian) {
throw new IllegalStateException("Isolation Forest doesn't expect the distribution to be specified by the user");
}
_parms._distribution = DistributionFamily.gaussian;
if (_parms._contamination != -1 && (_parms._contamination <= 0 || _parms._contamination > 0.5)) {
error("_contamination", "Contamination parameter needs to be in range (0, 0.5] or undefined (-1); but it is " + _parms._contamination);
}
if (_parms._valid != null) {
if (_parms._response_column == null) {
error("_response_column", "Response column needs to be defined when using a validation frame.");
} else if (expensive && vresponse() == null) {
error("_response_column", "Validation frame is missing response column `" + _parms._response_column + "`.");
}
if (_parms._contamination > 0) {
error("_contamination", "Contamination parameter cannot be used together with a validation frame.");
}
} else {
if (_parms._stopping_metric != ScoreKeeper.StoppingMetric.AUTO && _parms._stopping_metric != ScoreKeeper.StoppingMetric.anomaly_score) {
error("_stopping_metric", "Stopping metric `" + _parms._stopping_metric +
"` can only be used when a labeled validation frame is provided.");
}
}
if (expensive) {
if (vresponse() != null) {
if (!vresponse().isBinary() || vresponse().domain()==null) {
error("_response_column", "The response column of the validation frame needs to have a binary categorical domain (not anomaly/anomaly).");
}
}
if (response() != null) {
error("_training_frame", "Training frame should not have a response column");
}
}
}
@Override
protected void validateRowSampleRate() {
if (_parms._sample_rate == -1) {
if (_parms._sample_size <= 0) {
error("_sample_size", "Sample size needs to be a positive integer number but it is " + _parms._sample_size);
} else if (_train != null && _train.numRows() > 0) {
_parms._sample_rate = _parms._sample_size / (double) _train.numRows();
}
}
}
@Override
protected boolean validateStoppingMetric() {
return false; // disable the default stopping metric validation
}
private void randomResp(final long seed, final int iteration) {
new MRTask() {
@Override public void map(Chunk chks[]) {
Chunk c = chk_work(chks, 0);
final long chunk_seed = seed + (c.start() * (1 + iteration));
for (int i = 0; i < c._len; i++) {
double rnd = getRNG(chunk_seed + i).nextDouble();
chk_work(chks, 0).set(i, rnd);
}
}
}.doAll(_train);
}
@Override
protected DTree.DecidedNode makeDecided(DTree.UndecidedNode udn, DHistogram hs[], Constraints cs) {
return new IFDecidedNode(udn, hs, cs);
}
private class IFDecidedNode extends DTree.DecidedNode {
private IFDecidedNode(DTree.UndecidedNode n, DHistogram[] hs, Constraints cs) {
super(n, hs, cs, null);
}
@Override
public DTree.Split bestCol(DTree.UndecidedNode u, DHistogram hs[], Constraints cs) {
if( hs == null ) return null;
final int maxCols = u._scoreCols == null /* all cols */ ? hs.length : u._scoreCols.length;
List findSplits = new ArrayList<>();
for (int i=0; i 0) {
assert vresponse() == null; // contamination is not compatible with using validation frame
assert _model.outputAnomalyFlag();
Frame fr = _model.score(_train);
try {
Vec score = fr.vec("score");
assert score != null;
out._defaultThreshold = Quantile.calcQuantile(score, 1 - _parms._contamination);
} finally {
fr.delete();
}
} else if (_model._output._validation_metrics instanceof ModelMetricsBinomial) {
out._defaultThreshold = ((ModelMetricsBinomial) _model._output._validation_metrics)._auc.defaultThreshold();
}
}
// ----------------------
private class IsolationForestDriver extends Driver {
@Override protected boolean doOOBScoring() { return true; }
@Override protected void initializeModelSpecifics() {
_mtry_per_tree = Math.max(1, (int)(_parms._col_sample_rate_per_tree * _ncols));
if (!(1 <= _mtry_per_tree && _mtry_per_tree <= _ncols)) throw new IllegalArgumentException("Computed mtry_per_tree should be in interval <1,"+_ncols+"> but it is " + _mtry_per_tree);
if(_parms._mtries==-2){ //mtries set to -2 would use all columns in each split regardless of what column has been dropped during train
_mtry = _ncols;
}else if(_parms._mtries==-1) {
_mtry = (isClassifier() ? Math.max((int) Math.sqrt(_ncols), 1) : Math.max(_ncols / 3, 1)); // classification: mtry=sqrt(_ncols), regression: mtry=_ncols/3
}else{
_mtry = _parms._mtries;
}
if (!(1 <= _mtry && _mtry <= _ncols)) {
throw new IllegalArgumentException("Computed mtry should be in interval <1," + _ncols + "> but it is " + _mtry);
}
_initialPrediction = 0;
_var_splits = new VarSplits(_ncols);
if ((_parms._contamination > 0) || (vresponse() != null)) {
_model._output._defaultThreshold = 0.5;
assert _model.outputAnomalyFlag();
}
}
// --------------------------------------------------------------------------
// Build the next random k-trees representing tid-th tree
@Override protected boolean buildNextKTrees() {
// Create a Random response
randomResp(_parms._seed, _model._output._ntrees);
final long rseed = _rand.nextLong();
final DTree tree = new DTree(_train, _ncols, _mtry, _mtry_per_tree, rseed, _parms);
final DTree[] ktrees = {tree};
new Sample(tree, _parms._sample_rate, null)
.dfork(null, new Frame(vec_nids(_train, 0), vec_work(_train, 0)), _parms._build_tree_one_node)
.getResult();
// Assign rows to nodes - fill the "NIDs" column(s)
growTree(rseed, ktrees);
// Reset NIDs
CalculatePaths stats = new CalculatePaths(ktrees[0]).doAll(_train, _parms._build_tree_one_node);
// Grow the model by K-trees
_model._output.addKTrees(ktrees);
_model._output._min_path_length = stats._minPathLength;
_model._output._max_path_length = stats._maxPathLength;
return false; // never stop early
}
// Assumes that the "Work" column are filled with copy of a random generated response
private void growTree(long rseed, final DTree[] ktrees) {
// Initial set of histograms. All trees; one leaf per tree (the root
// leaf); all columns
DHistogram hcs[][][] = new DHistogram[_nclass][1/*just root leaf*/][_ncols];
// Adjust real bins for the top-levels
int adj_nbins = Math.max(_parms._nbins_top_level,_parms._nbins);
// Initially setup as-if an empty-split had just happened
final DTree tree = ktrees[0];
new UndecidedNode(tree, -1, DHistogram.initialHist(_train, _ncols, adj_nbins, hcs[0][0], rseed, _parms, getGlobalQuantilesKeys(), null, false, null), null, null); // The "root" node
// ----
// One Big Loop till the ktrees are of proper depth.
// Adds a layer to the trees each pass.
final int[] leafs = new int[1];
for(int depth=0 ; depth<_parms._max_depth; depth++ ) {
hcs = buildLayer(_train, _parms._nbins, ktrees, leafs, hcs, _parms._build_tree_one_node);
// If we did not make any new splits, then the tree is split-to-death
if( hcs == null ) break;
}
// Each tree bottomed-out in a DecidedNode; go 1 more level and insert
// LeafNodes to hold predictions.
int leaf = tree.len();
int depths[] = new int[leaf];
for( int nid=0; nid= 0 ? depths[dn._pid] + 1 : 0;
for( int i=0; i {
private final DTree _tree;
// OUT
private int _minPathLength = Integer.MAX_VALUE;
private int _maxPathLength = 0;
private CalculatePaths(DTree tree) { _tree = tree; }
@Override public void map(Chunk[] chks) {
final Chunk tree = chk_tree(chks, 0);
final Chunk nids = chk_nids(chks, 0); // Node-ids for this tree/class
final Chunk oobt = chk_oobt(chks);
for (int row = 0; row < nids._len; row++) {
final int rawNid = (int) chk_nids(chks,0).at8(row);
final boolean wasOOBRow = ScoreBuildHistogram.isOOBRow(rawNid);
final int nid = wasOOBRow ? ScoreBuildHistogram.oob2Nid(rawNid) : rawNid;
final int depth = getNodeDepth(chks, row, nid);
if (wasOOBRow) {
double oobcnt = oobt.atd(row) + 1;
oobt.set(row, oobcnt);
}
final int total_len = PathTracker.encodeNewPathLength(tree, row, depth, wasOOBRow);
_maxPathLength = total_len > _maxPathLength ? total_len : _maxPathLength;
_minPathLength = total_len < _minPathLength ? total_len : _minPathLength;
// reset NIds
nids.set(row, 0);
}
}
@Override public void reduce(CalculatePaths mrt) {
_minPathLength = Math.min(_minPathLength, mrt._minPathLength);
_maxPathLength = Math.max(_maxPathLength, mrt._maxPathLength);
}
int getNodeDepth(Chunk[] chks, int row, int nid) {
if (_tree.root() instanceof LeafNode) {
return 0;
} else {
if (_tree.node(nid) instanceof UndecidedNode) // If we bottomed out the tree
nid = _tree.node(nid).pid(); // Then take parent's decision
DecidedNode dn = _tree.decided(nid); // Must have a decision point
if (dn._split == null) // Unable to decide?
dn = _tree.decided(_tree.node(nid).pid()); // Then take parent's decision
int leafnid = dn.getChildNodeID(chks, row); // Decide down to a leafnode
double depth = ((LeafNode) _tree.node(leafnid)).pred();
assert (int) depth == depth;
return (int) depth;
}
}
}
@Override protected IsolationForestModel makeModel(Key modelKey, IsolationForestParameters parms) {
return new IsolationForestModel(modelKey, parms, new IsolationForestOutput(IsolationForest.this));
}
}
@Override protected double score1(Chunk chks[], double weight, double offset, double fs[/*2*/], int row) {
assert weight == 1;
int len = PathTracker.decodeOOBPathLength(chk_tree(chks, 0), row);
fs[1] = len / chk_oobt(chks).atd(row); // average tree path length
fs[0] = _model.normalizePathLength(fs[1] * _model._output._ntrees); // score
return fs[0];
}
protected TwoDimTable createScoringHistoryTable() {
List colHeaders = new ArrayList<>();
List colTypes = new ArrayList<>();
List colFormat = new ArrayList<>();
colHeaders.add("Timestamp"); colTypes.add("string"); colFormat.add("%s");
colHeaders.add("Duration"); colTypes.add("string"); colFormat.add("%s");
colHeaders.add("Number of Trees"); colTypes.add("long"); colFormat.add("%d");
colHeaders.add("Mean Tree Path Length"); colTypes.add("double"); colFormat.add("%.5f");
colHeaders.add("Mean Anomaly Score"); colTypes.add("double"); colFormat.add("%.5f");
if (_parms._custom_metric_func != null) {
colHeaders.add("Training Custom"); colTypes.add("double"); colFormat.add("%.5f");
}
ScoreKeeper[] sks = _model._output._scored_train;
int rows = 0;
for (int i = 0; i < sks.length; i++) {
if (i != 0 && Double.isNaN(sks[i]._anomaly_score)) continue;
rows++;
}
TwoDimTable table = new TwoDimTable(
"Scoring History", null,
new String[rows],
colHeaders.toArray(new String[0]),
colTypes.toArray(new String[0]),
colFormat.toArray(new String[0]),
"");
int row = 0;
for( int i = 0; i {
public final int[] _splitCounts;
public final float[] _aggSplitRatios;
public final long[] _splitDepths;
private VarSplits(int ncols) {
_splitCounts = new int[ncols];
_aggSplitRatios = new float[ncols];
_splitDepths = new long[ncols];
}
void update(int col, DTree.Split split, int depth) {
_aggSplitRatios[col] += Math.abs(split.n0() - split.n1()) / (split.n0() + split.n1());
_splitCounts[col]++;
_splitDepths[col] += depth + 1;
}
public TwoDimTable toTwoDimTable(String[] coef_names, String table_header) {
double[][] dblCellValues = new double[_splitCounts.length][];
for (int i = 0; i < _splitCounts.length; i++) {
dblCellValues[i] = new double[]{_splitCounts[i], _aggSplitRatios[i], _splitDepths[i]};
}
String[] col_headers = {"Count", "Aggregated Split Ratios", "Aggregated Split Depths"};
String[] col_types = {"int", "double", "long"};
String[] col_formats = {"%10d", "%5f", "%10d"};
return new TwoDimTable(table_header, null, coef_names, col_headers, col_types, col_formats,
"Variable", new String[_splitCounts.length][], dblCellValues);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy