All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.aggregator.AggregatorModel Maven / Gradle / Ivy

package hex.aggregator;

import hex.*;
import hex.pca.PCAModel;
import hex.util.LinearAlgebraUtils;
import water.*;
import water.fvec.Chunk;
import water.fvec.Frame;
import water.fvec.NewChunk;
import water.fvec.Vec;
import water.udf.CFuncRef;
import water.util.ArrayUtils;
import water.util.FrameUtils;
import water.util.VecUtils;

import java.util.Arrays;

public class AggregatorModel extends Model implements Model.ExemplarMembers {

  @Override
  public ToEigenVec getToEigenVec() {
    return LinearAlgebraUtils.toEigen;
  }

  public static class AggregatorParameters extends Model.Parameters {
    public String algoName() { return "Aggregator"; }
    public String fullName() { return "Aggregator"; }
    public String javaName() { return AggregatorModel.class.getName(); }
    @Override public long progressUnits() { return 5 + 2*train().anyVec().nChunks() - 1; } // nChunks maps and nChunks-1 reduces, multiply by two for main job overhead

    //public double _radius_scale=1.0;
//    public int _max_iterations = 1000;     // Max iterations for SVD
    public DataInfo.TransformType _transform = DataInfo.TransformType.NORMALIZE; // Data transformation
    public PCAModel.PCAParameters.Method _pca_method = PCAModel.PCAParameters.Method.Power;   // Method for dimensionality reduction
    public int _k = 1;                     // Number of principal components
    public int _target_num_exemplars = 5000;
    public double _rel_tol_num_exemplars = 0.5;
    public boolean _use_all_factor_levels = false;   // When expanding categoricals, should first level be kept or dropped?
    public boolean _save_mapping_frame = false;
    public int _num_iteration_without_new_exemplar = 500;
  }

  public static class AggregatorOutput extends Model.Output {
    public AggregatorOutput(Aggregator b) { super(b); }
    @Override public int nfeatures() { return _output_frame.get().numCols()-1/*counts*/; }
    @Override public ModelCategory getModelCategory() { return ModelCategory.Clustering; }

    public Key _output_frame;
    public Key _mapping_frame;

  }


  public Aggregator.Exemplar[] _exemplars;
  public long[] _counts;
  public Key _exemplar_assignment_vec_key;


  public AggregatorModel(Key selfKey, AggregatorParameters parms, AggregatorOutput output) { 
    super(selfKey,parms,output);
  }

  @Override
  protected PredictScoreResult predictScoreImpl(Frame orig, Frame adaptedFr, String destination_key, final Job j, boolean computeMetrics, CFuncRef customMetricFunc) {
    return new PredictScoreResult(null, null, null);
  }

  @Override
  protected Futures remove_impl(Futures fs, boolean cascade) {
    Keyed.remove(_exemplar_assignment_vec_key);
    return super.remove_impl(fs, cascade);
  }

  @Override
  public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
    return null;
  }

  @Override
  protected double[] score0(double[] data, double[] preds) {
    return preds;
  }

  public Frame createFrameOfExemplars(Frame orig, Key destination_key) {
    final long[] keep = new long[_exemplars.length];
    for (int i=0;i= c2.start()+c2._len) continue;
          c2.set((int)(keep[i]-c2.start()), 1);
        }
      }
    }.doAll(new Frame(new Vec[]{exAssignment.makeZero()}))._fr.vec(0);

    Vec[] vecs = Arrays.copyOf(orig.vecs(), orig.vecs().length+1);
    vecs[vecs.length-1] = booleanCol;

    Frame ff = new Frame(orig.names(), orig.vecs());
    ff.add("predicate", booleanCol);
    Frame res = new Frame.DeepSelect().doAll(orig.types(),ff).outputFrame(destination_key, orig.names(), orig.domains());
    FrameUtils.shrinkDomainsToObservedSubset(res);
    booleanCol.remove();
    assert(res.numRows()==_exemplars.length);

    Vec cnts = res.anyVec().makeZero();
    Vec.Writer vw = cnts.open();
    for (int i=0;i<_counts.length;++i)
      vw.set(i, _counts[i]);
    vw.close();
    res.add("counts", cnts);
    DKV.put(destination_key, res);
    return res;
  }

  public Frame createMappingOfExemplars(Key destinationKey){
    final long[] keep = MemoryManager.malloc8(_exemplars.length);
    for (int i=0;i destination_key, final int exemplarIdx) {
    Vec booleanCol = new MRTask() {
      @Override
      public void map(Chunk c, NewChunk nc) {
        for (int i=0;i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy