hex.deeplearning.DeepLearning Maven / Gradle / Ivy
package hex.deeplearning;
import hex.*;
import hex.deeplearning.DeepLearningModel.DeepLearningParameters;
import hex.deeplearning.DeepLearningModel.DeepLearningParameters.MissingValuesHandling;
import hex.genmodel.utils.DistributionFamily;
import hex.glm.GLMTask;
import hex.util.EffectiveParametersUtils;
import hex.util.LinearAlgebraUtils;
import water.*;
import water.exceptions.H2OIllegalArgumentException;
import water.exceptions.H2OModelBuilderIllegalArgumentException;
import water.fvec.Frame;
import water.fvec.RebalanceDataSet;
import water.fvec.Vec;
import water.init.Linpack;
import water.init.NetworkTest;
import water.util.ArrayUtils;
import water.util.Log;
import water.util.MRUtils;
import water.util.PrettyPrint;
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import static hex.util.LinearAlgebraUtils.toEigenArray;
import static water.util.MRUtils.sampleFrame;
import static water.util.MRUtils.sampleFrameStratified;
/**
* Deep Learning Neural Net implementation based on MRTask
*/
public class DeepLearning extends ModelBuilder {
/** Main constructor from Deep Learning parameters */
public DeepLearning( DeepLearningParameters parms ) { super(parms); init(false); }
public DeepLearning( DeepLearningParameters parms, Key key ) { super(parms,key); init(false); }
public DeepLearning( boolean startup_once ) { super(new DeepLearningParameters(),startup_once); }
/** Types of models we can build with DeepLearning */
@Override public ModelCategory[] can_build() {
return new ModelCategory[]{
ModelCategory.Regression,
ModelCategory.Binomial,
ModelCategory.Multinomial,
ModelCategory.AutoEncoder
};
}
@Override public boolean havePojo() { return true; }
@Override public boolean haveMojo() { return true; }
@Override
public ToEigenVec getToEigenVec() {
return LinearAlgebraUtils.toEigen;
}
@Override public boolean isSupervised() { return !_parms._autoencoder; }
@Override protected DeepLearningDriver trainModelImpl() { return new DeepLearningDriver(); }
/** Initialize the ModelBuilder, validating all arguments and preparing the
* training frame. This call is expected to be overridden in the subclasses
* and each subclass will start with "super.init();". This call is made
* by the front-end whenever the GUI is clicked, and needs to be fast;
* heavy-weight prep needs to wait for the trainModel() call.
*
* Validate the very large number of arguments in the DL Parameter directly. */
@Override public void init(boolean expensive) {
super.init(expensive);
_parms.validate(this, expensive);
_orig_projection_array = LinearAlgebraUtils.toEigenProjectionArray(_origTrain, _train, expensive);
DistributionFamily[] allowed_distributions = new DistributionFamily[] {
DistributionFamily.AUTO,
DistributionFamily.bernoulli,
DistributionFamily.multinomial,
DistributionFamily.gaussian,
DistributionFamily.poisson,
DistributionFamily.gamma,
DistributionFamily.laplace,
DistributionFamily.quantile,
DistributionFamily.huber,
DistributionFamily.tweedie,
};
if (!(ArrayUtils.contains(allowed_distributions, _parms._distribution)))
error("_distribution", _parms._distribution.name() + " is not supported for DeepLearning in current H2O.");
if (expensive && error_count() == 0) checkMemoryFootPrint();
}
/**
* Helper to create the DataInfo object from training/validation frames and the DL parameters
* @param train Training frame
* @param valid Validation frame
* @param parms Model parameters
* @param nClasses Number of response levels (1: regression, >=2: classification)
* @return DataInfo
*/
static DataInfo makeDataInfo(Frame train, Frame valid, DeepLearningParameters parms, int nClasses) {
double x = 0.782347234;
boolean identityLink = DistributionFactory.getDistribution(parms).link(x) == x;
DataInfo dinfo = new DataInfo(
train,
valid,
parms._autoencoder ? 0 : 1, //nResponses
parms._autoencoder || parms._use_all_factor_levels, //use all FactorLevels for auto-encoder
parms._standardize ? (parms._autoencoder ? DataInfo.TransformType.NORMALIZE : parms._sparse ? DataInfo.TransformType.DESCALE : DataInfo.TransformType.STANDARDIZE) : DataInfo.TransformType.NONE, //transform predictors
!parms._standardize || train.lastVec().isCategorical() ? DataInfo.TransformType.NONE : identityLink ? DataInfo.TransformType.STANDARDIZE : DataInfo.TransformType.NONE, //transform response for regression with identity link
parms._missing_values_handling == DeepLearningParameters.MissingValuesHandling.Skip, //whether to skip missing
false, // do not replace NAs in numeric cols with mean
true, // always add a bucket for missing values
parms._weights_column != null, // observation weights
parms._offset_column != null,
parms._fold_column != null
);
// Checks and adjustments:
// 1) observation weights (adjust mean/sigmas for predictors and response)
// 2) NAs (check that there's enough rows left)
GLMTask.YMUTask ymt = new GLMTask.YMUTask(dinfo, nClasses,!parms._autoencoder && nClasses == 1, parms._missing_values_handling == MissingValuesHandling.Skip, !parms._autoencoder,true).doAll(dinfo._adaptedFrame);
if (ymt.wsum() == 0 && parms._missing_values_handling == DeepLearningParameters.MissingValuesHandling.Skip)
throw new H2OIllegalArgumentException("No rows left in the dataset after filtering out rows with missing values. Ignore columns with many NAs or set missing_values_handling to 'MeanImputation'.");
if (parms._weights_column != null && parms._offset_column != null) {
Log.warn("Combination of offset and weights can lead to slight differences because Rollupstats aren't weighted - need to re-calculate weighted mean/sigma of the response including offset terms.");
}
if (parms._weights_column != null && parms._offset_column == null /*FIXME: offset not yet implemented*/) {
dinfo.updateWeightedSigmaAndMean(ymt.predictorSDs(), ymt.predictorMeans());
if (nClasses == 1)
dinfo.updateWeightedSigmaAndMeanForResponse(ymt.responseSDs(), ymt.responseMeans());
}
return dinfo;
}
@Override protected void checkMemoryFootPrint_impl() {
if (_parms._checkpoint != null) return;
long p = hex.util.LinearAlgebraUtils.numColsExp(_train,true) - (_parms._autoencoder ? 0 : _train.lastVec().cardinality());
String[][] dom = _train.domains();
// hack: add the factor levels for the NAs
for (int i=0; i<_train.numCols()-(_parms._autoencoder ? 0 : 1); ++i) {
if (dom[i] != null) {
p++;
}
}
// assert(makeDataInfo(_train, _valid, _parms).fullN() == p);
long output = _parms._autoencoder ? p : Math.abs(_train.lastVec().cardinality());
long model_size = 0;
if (_parms._hidden.length==0) {
model_size += p * output;
} else {
// weights
model_size += p * _parms._hidden[0];
int layer = 1;
for (; layer < _parms._hidden.length; ++layer)
model_size += _parms._hidden[layer - 1] * _parms._hidden[layer];
model_size += _parms._hidden[layer - 1] * output;
// biases
for (layer = 0; layer < _parms._hidden.length; ++layer)
model_size += _parms._hidden[layer];
model_size += output;
}
if (model_size > 1e8) {
String msg = "Model is too large: " + model_size + " parameters. Try reducing the number of neurons in the hidden layers (or reduce the number of categorical factors).";
error("_hidden", msg);
}
}
@Override public void cv_computeAndSetOptimalParameters(ModelBuilder[] cvModelBuilders) {
_parms._overwrite_with_best_model = false;
if( _parms._stopping_rounds == 0 && _parms._max_runtime_secs == 0) return; // No exciting changes to stopping conditions
// Extract stopping conditions from each CV model, and compute the best stopping answer
_parms._stopping_rounds = 0;
setMaxRuntimeSecsForMainModel();
double sum = 0;
for( ModelBuilder cvmb : cvModelBuilders )
sum += ((DeepLearningModel)DKV.getGet(cvmb.dest())).last_scored().epoch_counter;
_parms._epochs = sum/cvModelBuilders.length;
if( !_parms._quiet_mode ) {
warn("_epochs", "Setting optimal _epochs to " + _parms._epochs + " for cross-validation main model based on early stopping of cross-validation models.");
warn("_stopping_rounds", "Disabling convergence-based early stopping for cross-validation main model.");
if (_parms._main_model_time_budget_factor == 0)
warn("_max_runtime_secs", "Disabling maximum allowed runtime for cross-validation main model.");
}
}
@Override
protected Frame rebalance(final Frame original_fr, boolean local, final String name) {
if (original_fr == null) return null;
if (_parms._force_load_balance || _parms._reproducible) { //this is called before the parameters are sanitized, so force_load_balance might be user-disabled -> so must check reproducible flag as well
int original_chunks = original_fr.anyVec().nChunks();
_job.update(0,"Load balancing " + name.substring(name.length() - 5) + " data...");
int chunks = desiredChunks(original_fr, local);
if (!_parms._reproducible) {
if (original_chunks >= chunks){
if (!_parms._quiet_mode)
Log.info("Dataset already contains " + original_chunks + " chunks. No need to rebalance.");
return original_fr;
}
} else { //reproducible, set chunks to 1
assert chunks == 1;
if (!_parms._quiet_mode)
Log.warn("Reproducibility enforced - using only 1 thread - can be slow.");
if (original_chunks == 1)
return original_fr;
}
if (!_parms._quiet_mode)
Log.info("Rebalancing " + name.substring(name.length()-5) + " dataset into " + chunks + " chunks.");
Key newKey = Key.make(name + ".chks" + chunks);
RebalanceDataSet rb = new RebalanceDataSet(original_fr, newKey, chunks);
H2O.submitTask(rb).join();
Frame rebalanced_fr = DKV.get(newKey).get();
Scope.track(rebalanced_fr);
return rebalanced_fr;
}
return original_fr;
}
@Override
protected int desiredChunks(final Frame original_fr, boolean local) {
return _parms._reproducible ? 1 : (int) Math.min(4 * H2O.NUMCPUS * (local ? 1 : H2O.CLOUD.size()), original_fr.numRows());
}
public class DeepLearningDriver extends Driver {
@Override public void computeImpl() {
init(true); //this can change the seed if it was set to -1
if (Model.evaluateAutoModelParameters()) {
initActualParamValues();
}
Model.Parameters parmsToCheck = _parms.clone();
// Something goes wrong
if (error_count() > 0)
throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(DeepLearning.this);
buildModel();
//check that all members of _param apart of those which were originally set to AUTO haven't changed during DL model training
checkNonAutoParmsNotChanged(parmsToCheck, _parms);
}
public void checkNonAutoParmsNotChanged(Model.Parameters params1, Model.Parameters params2){
try {
for (Field field : params1.getClass().getFields()) {
Class type = field.getType();
Object value1 = field.get(params1);
if (value1 != null && !"AUTO".equalsIgnoreCase(value1.toString())){
Object value2 = field.get(params2);
assert(value1.toString().equalsIgnoreCase(value2.toString())) : "Found non-AUTO value in _parms which has changed during DL model training";
}
}
} catch (IllegalAccessException e) {
throw new RuntimeException("Error while checking param changes during DL model training", e);
}
}
/**
* Train a Deep Learning model, assumes that all members are populated
* If checkpoint == null, then start training a new model, otherwise continue from a checkpoint
*/
public final void buildModel() {
DeepLearningModel cp = null;
List removeMe = new ArrayList();
if (_parms._checkpoint == null) {
cp = new DeepLearningModel(dest(), _parms, new DeepLearningModel.DeepLearningModelOutput(DeepLearning.this), _train, _valid, nclasses());
if (_parms._pretrained_autoencoder != null) {
final DeepLearningModel pretrained = DKV.getGet(_parms._pretrained_autoencoder);
if (pretrained == null)
throw new H2OIllegalArgumentException("The pretrained model '" + _parms._pretrained_autoencoder + "' cannot be found.");
if (_parms._autoencoder || !pretrained._parms._autoencoder)
throw new H2OIllegalArgumentException("The pretrained model must be unsupervised (an autoencoder), and the model to be trained must be supervised.");
Log.info("Loading model parameters of input and hidden layers from the pretrained autoencoder model.");
cp.model_info().initializeFromPretrainedModel(pretrained.model_info());
} else {
cp.model_info().initializeMembers(_parms._initial_weights, _parms._initial_biases);
}
} else {
final DeepLearningModel previous = DKV.getGet(_parms._checkpoint);
if (previous == null) throw new IllegalArgumentException("Checkpoint not found.");
Log.info("Resuming from checkpoint.");
_job.update(0,"Resuming from checkpoint");
if( isClassifier() != previous._output.isClassifier() )
throw new H2OIllegalArgumentException("Response type must be the same as for the checkpointed model.");
if( isSupervised() != previous._output.isSupervised() )
throw new H2OIllegalArgumentException("Model type must be the same as for the checkpointed model.");
//READ ONLY
DeepLearningParameters.Sanity.checkIfParameterChangeAllowed(previous._input_parms, _parms);
DataInfo dinfo;
try {
// PUBDEV-2513: Adapt _train and _valid (in-place) to match the frames that were used for the previous model
// This can add or remove dummy columns (can happen if the dataset is sparse and datasets have different non-const columns)
for (String st : previous.adaptTestForTrain(_train,true,false)) Log.warn(st);
for (String st : previous.adaptTestForTrain(_valid,true,false)) Log.warn(st);
dinfo = makeDataInfo(_train, _valid, _parms, nclasses());
DKV.put(dinfo); // For FrameTask that needs DataInfo in the DKV as a standalone thing - the DeepLearningModel has its own copy inside itself
removeMe.add(dinfo._key);
cp = new DeepLearningModel(dest(), _parms, previous, false, dinfo);
cp.write_lock(_job);
if (!Arrays.equals(cp._output._names, previous._output._names)) {
throw new H2OIllegalArgumentException("The columns of the training data must be the same as for the checkpointed model. Check ignored columns (or disable ignore_const_cols).");
}
if (!Arrays.deepEquals(cp._output._domains, previous._output._domains)) {
throw new H2OIllegalArgumentException("Categorical factor levels of the training data must be the same as for the checkpointed model.");
}
if (dinfo.fullN() != previous.model_info().data_info().fullN()) {
throw new H2OIllegalArgumentException("Total number of predictors is different than for the checkpointed model.");
}
if (_parms._epochs <= previous.epoch_counter) {
throw new H2OIllegalArgumentException("Total number of epochs must be larger than the number of epochs already trained for the checkpointed model (" + previous.epoch_counter + ").");
}
// these are the mutable parameters that are to be used by the model (stored in model_info.parameters)
final DeepLearningParameters actualParms = cp.model_info().get_params(); //actually used parameters for model building (defaults filled in, etc.)
assert (actualParms != previous.model_info().get_params());
assert (actualParms != _parms);
assert (actualParms != previous._parms);
// Update actualNewP parameters based on what the user wants (cp_modifiable parameters only), was cloned from the previous model so far
//show the user only the changes in the user-facing parameters
DeepLearningParameters.Sanity.updateParametersDuringCheckpointRestart(_parms, previous._parms, false /*doIt*/, false /*quiet*/);
//actually change the parameters in the "insider" version of parameters
DeepLearningParameters.Sanity.updateParametersDuringCheckpointRestart(_parms /*user-given*/, cp.model_info().get_params() /*model_info.parameters that will be used*/, true /*doIt*/, true /*quiet*/);
// update/sanitize parameters (in place) to set defaults etc.
DeepLearningParameters.Sanity.modifyParms(_parms, cp.model_info().get_params(), nclasses());
Log.info("Continuing training after " + String.format("%.3f", previous.epoch_counter) + " epochs from the checkpointed model.");
cp.update(_job);
} catch (H2OIllegalArgumentException ex){
if (cp != null) {
cp.unlock(_job);
cp.delete();
cp = null;
}
throw ex;
} finally {
if (cp != null) cp.unlock(_job);
}
}
DistributionFamily actualDistribution = cp.model_info().get_params()._distribution;
if (Model.evaluateAutoModelParameters() && _parms._distribution == DistributionFamily.AUTO) {
_parms._distribution = actualDistribution;
cp._parms._distribution = actualDistribution;
}
trainModel(cp);
for (Key k : removeMe) DKV.remove(k);
// clean up, but don't delete weights and biases if user asked for export
List keep = new ArrayList<>();
try {
if ( _parms._export_weights_and_biases && cp._output.weights != null && cp._output.biases != null) {
for (Key k : Arrays.asList(cp._output.weights)) {
keep.add(k);
for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
keep.add(vk._key);
}
}
for (Key k : Arrays.asList(cp._output.biases)) {
keep.add(k);
for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
keep.add(vk._key);
}
}
}
} finally {
Scope.exit(keep.toArray(new Key[keep.size()]));
}
}
/**
* Train a Deep Learning neural net model
* @param model Input model (e.g., from initModel(), or from a previous training run)
* @return Trained model
*/
public final DeepLearningModel trainModel(DeepLearningModel model) {
Frame validScoreFrame = null;
Frame train, trainScoreFrame;
try {
// if (checkpoint == null && !quiet_mode) logStart(); //if checkpoint is given, some Job's params might be uninitialized (but the restarted model's parameters are correct)
if (model == null) {
model = DKV.get(dest()).get();
}
Log.info("Model category: " + (_parms._autoencoder ? "Auto-Encoder" : isClassifier() ? "Classification" : "Regression"));
final long model_size = model.model_info().size();
Log.info("Number of model parameters (weights/biases): " + String.format("%,d", model_size));
model.write_lock(_job);
_job.update(0,"Setting up training data...");
final DeepLearningParameters mp = model.model_info().get_params();
// temporary frames of the same "name" as the orig _train/_valid (asking the parameter's Key, not the actual frame)
// Note: don't put into DKV or they would overwrite the _train/_valid frames!
Frame tra_fr = new Frame(mp._train, _train.names(), _train.vecs());
Frame val_fr = _valid != null ? new Frame(mp._valid,_valid.names(), _valid.vecs()) : null;
train = tra_fr;
if (model._output.isClassifier() && mp._balance_classes) {
_job.update(0,"Balancing class distribution of training data...");
float[] trainSamplingFactors = new float[train.lastVec().domain().length]; //leave initialized to 0 -> will be filled up below
if (mp._class_sampling_factors != null) {
if (mp._class_sampling_factors.length != train.lastVec().domain().length)
throw new IllegalArgumentException("class_sampling_factors must have " + train.lastVec().domain().length + " elements");
trainSamplingFactors = mp._class_sampling_factors.clone(); //clone: don't modify the original
}
train = sampleFrameStratified(
train, train.lastVec(), train.vec(model._output.weightsName()), trainSamplingFactors, (long)(mp._max_after_balance_size*train.numRows()), mp._seed, true, false);
Vec l = train.lastVec();
Vec w = train.vec(model._output.weightsName());
MRUtils.ClassDist cd = new MRUtils.ClassDist(l);
model._output._modelClassDist = _weights != null ? cd.doAll(l, w).relDist() : cd.doAll(l).relDist();
}
model.training_rows = train.numRows();
if (_weights != null && _weights.min()==0 && _weights.max()==1 && _weights.isInt()) {
model.training_rows = Math.round(train.numRows()*_weights.mean());
Log.warn("Not counting " + (train.numRows() - model.training_rows) + " rows with weight=0 towards an epoch.");
}
Log.info("One epoch corresponds to " + model.training_rows + " training data rows.");
trainScoreFrame = sampleFrame(train, mp._score_training_samples, mp._seed); //training scoring dataset is always sampled uniformly from the training dataset
if( trainScoreFrame != train ) Scope.track(trainScoreFrame);
if (!_parms._quiet_mode) Log.info("Number of chunks of the training data: " + train.anyVec().nChunks());
if (val_fr != null) {
model.validation_rows = val_fr.numRows();
// validation scoring dataset can be sampled in multiple ways from the given validation dataset
if (model._output.isClassifier() && mp._balance_classes && mp._score_validation_sampling == DeepLearningParameters.ClassSamplingMethod.Stratified) {
_job.update(0,"Sampling validation data (stratified)...");
validScoreFrame = sampleFrameStratified(val_fr, val_fr.lastVec(), val_fr.vec(model._output.weightsName()), null,
mp._score_validation_samples > 0 ? mp._score_validation_samples : val_fr.numRows(), mp._seed +1, false /* no oversampling */, false);
} else {
_job.update(0,"Sampling validation data...");
validScoreFrame = sampleFrame(val_fr, mp._score_validation_samples, mp._seed +1);
if( validScoreFrame != val_fr ) Scope.track(validScoreFrame);
}
if (!_parms._quiet_mode) Log.info("Number of chunks of the validation data: " + validScoreFrame.anyVec().nChunks());
}
// Set train_samples_per_iteration size (cannot be done earlier since this depends on whether stratified sampling is done)
model.actual_train_samples_per_iteration = computeTrainSamplesPerIteration(mp, model.training_rows, model);
// Determine whether shuffling is enforced
if(mp._replicate_training_data && (model.actual_train_samples_per_iteration == model.training_rows*(mp._single_node_mode ?1:H2O.CLOUD.size())) && !mp._shuffle_training_data && H2O.CLOUD.size() > 1 && !mp._reproducible) {
if (!mp._quiet_mode)
Log.info("Enabling training data shuffling, because all nodes train on the full dataset (replicated training data).");
mp._shuffle_training_data = true;
}
if(!mp._shuffle_training_data && model.actual_train_samples_per_iteration == model.training_rows && train.anyVec().nChunks()==1) {
if (!mp._quiet_mode)
Log.info("Enabling training data shuffling to avoid training rows in the same order over and over (no Hogwild since there's only 1 chunk).");
mp._shuffle_training_data = true;
}
// if (!mp._quiet_mode) Log.info("Initial model:\n" + model.model_info());
long now = System.currentTimeMillis();
model._timeLastIterationEnter = now;
if (_parms._autoencoder) {
_job.update(0,"Scoring null model of autoencoder...");
if (!mp._quiet_mode)
Log.info("Scoring the null model of the autoencoder.");
model.doScoring(trainScoreFrame, validScoreFrame, _job._key, 0, false); //get the null model reconstruction error
}
// put the initial version of the model into DKV
model.update(_job);
model.total_setup_time_ms += now - _job.start_time();
Log.info("Total setup time: " + PrettyPrint.msecs(model.total_setup_time_ms, true));
Log.info("Starting to train the Deep Learning model.");
_job.update(0,"Training...");
//main loop
for(;;) {
model.iterations++;
model.set_model_info(mp._epochs == 0 ? model.model_info() : H2O.CLOUD.size() > 1 && mp._replicate_training_data ? (mp._single_node_mode ?
new DeepLearningTask2(_job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations).doAll(Key.make(H2O.SELF)).model_info() : //replicated data + single node mode
new DeepLearningTask2(_job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations).doAllNodes( ).model_info()): //replicated data + multi-node mode
new DeepLearningTask (_job._key, model.model_info(), rowFraction(train, mp, model), model.iterations).doAll ( train ).model_info()); //distributed data (always in multi-node mode)
if (stop_requested() && !timeout()) throw new Job.JobCancelledException();
if (!model.doScoring(trainScoreFrame, validScoreFrame, _job._key, model.iterations, false)) break; //finished training (or early stopping or convergence)
if (timeout()) { //stop after scoring
_job.update((long) (mp._epochs * train.numRows())); // mark progress as completed
break;
}
}
// replace the model with the best model so far (if it's better)
if (!stop_requested() && _parms._overwrite_with_best_model && model.actual_best_model_key != null && _parms._nfolds == 0) {
DeepLearningModel best_model = DKV.getGet(model.actual_best_model_key);
if (best_model != null && best_model.loss() < model.loss() && Arrays.equals(best_model.model_info().units, model.model_info().units)) {
if (!_parms._quiet_mode) {
Log.info("Setting the model to be the best model so far (based on scoring history).");
Log.info("Best model's loss: " + best_model.loss() + " vs this model's loss (before overwriting it with the best model): " + model.loss());
}
DeepLearningModelInfo mi = IcedUtils.deepCopy(best_model.model_info());
// Don't cheat - count full amount of training samples, since that's the amount of training it took to train (without finding anything better)
mi.set_processed_global(model.model_info().get_processed_global());
mi.set_processed_local(model.model_info().get_processed_local());
DeepLearningParameters parms = model.model_info().get_params(); // backup the parameters for this model
model.set_model_info(mi); // this overwrites also the parameters from the previous best model, but we only want the state
model.model_info().parameters = parms; // restore the parameters
model.update(_job);
model.doScoring(trainScoreFrame, validScoreFrame, _job._key, model.iterations, true);
if (best_model.loss() != model.loss()) {
if (!_parms._quiet_mode) {
Log.info("Best model's loss: " + best_model.loss() + " vs this model's loss (after overwriting it with the best model) : " + model.loss());
}
Log.warn("Even though the model was reset to the previous best model, we observe different scoring results. " +
"Most likely, the data set has changed during a checkpoint restart. If so, please compare the metrics to observe your data shift.");
}
}
}
//store coefficient names for future use
//possibly change
model.model_info().data_info().coefNames();
}
finally {
if (!_parms._quiet_mode) {
Log.info("==============================================================================================================================================================================");
if (stop_requested()) {
if (timeout())
warn("_max_runtime_secs", "Deep Learning model training was interrupted due to " +
"timeout. Increase _max_runtime_secs or set it to 0 to disable it.");
Log.info("Deep Learning model training was interrupted.");
} else {
Log.info("Finished training the Deep Learning model.");
if (model!=null) Log.info(model);
}
Log.info("==============================================================================================================================================================================");
}
if (model != null) {
model.deleteElasticAverageModels();
model.unlock(_job);
if (model.actual_best_model_key != null) {
assert (model.actual_best_model_key != model._key);
DKV.remove(model.actual_best_model_key);
}
}
}
return model;
}
public void initActualParamValues() {
if (_parms._autoencoder) {
if (_parms._stopping_metric == ScoreKeeper.StoppingMetric.AUTO) {
_parms._stopping_metric = ScoreKeeper.StoppingMetric.MSE;
}
} else {
EffectiveParametersUtils.initStoppingMetric(_parms, isClassifier());
}
EffectiveParametersUtils.initCategoricalEncoding(_parms, Model.Parameters.CategoricalEncodingScheme.OneHotInternal);
}
/**
* Compute the fraction of rows that need to be used for training during one iteration
* @param numRows number of training rows
* @param train_samples_per_iteration number of training rows to be processed per iteration
* @param replicate_training_data whether of not the training data is replicated on each node
* @return fraction of rows to be used for training during one iteration
*/
private float computeRowUsageFraction(final long numRows, final long train_samples_per_iteration, final boolean replicate_training_data) {
float rowUsageFraction = (float)train_samples_per_iteration / numRows;
if (replicate_training_data) rowUsageFraction /= H2O.CLOUD.size();
assert(rowUsageFraction > 0);
return rowUsageFraction;
}
private float rowFraction(Frame train, DeepLearningParameters p, DeepLearningModel m) {
return computeRowUsageFraction(train.numRows(), m.actual_train_samples_per_iteration, p._replicate_training_data);
}
}
/**
* Compute the actual train_samples_per_iteration size from the user-given parameter
* @param mp Model parameter (DeepLearning object)
* @param numRows number of training rows
* @param model DL model
* @return The total number of training rows to be processed per iteration (summed over on all nodes)
*/
static long computeTrainSamplesPerIteration(final DeepLearningParameters mp, final long numRows, final DeepLearningModel model) {
long tspi = mp._train_samples_per_iteration;
assert(tspi == 0 || tspi == -1 || tspi == -2 || tspi >= 1);
if (tspi == 0 || (!mp._replicate_training_data && tspi == -1) ) {
tspi = numRows;
if (!mp._quiet_mode) Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to one epoch: #rows (" + tspi + ").");
}
else if (tspi == -1) {
tspi = (mp._single_node_mode ? 1 : H2O.CLOUD.size()) * numRows;
if (!mp._quiet_mode) Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to #nodes x #rows (" + tspi + ").");
} else if (tspi == -2) {
// automatic tuning based on CPU speed, network speed and model size
// measure cpu speed
double total_gflops = 0;
for (H2ONode h2o : H2O.CLOUD._memary) {
HeartBeat hb = h2o._heartbeat;
total_gflops += hb._gflops; //can be NaN if not yet run
}
if (mp._single_node_mode) total_gflops /= H2O.CLOUD.size();
if (Double.isNaN(total_gflops)) {
total_gflops = Linpack.run(H2O.SELF._heartbeat._cpus_allowed) * (mp._single_node_mode ? 1 : H2O.CLOUD.size());
}
assert(!Double.isNaN(total_gflops));
final long model_size = model.model_info().size();
int[] msg_sizes = new int[]{ 1, (int)(model_size*4) == (model_size*4) ? (int)(model_size*4) : Integer.MAX_VALUE };
double[] microseconds_collective = new double[msg_sizes.length];
NetworkTest.NetworkTester nt = new NetworkTest.NetworkTester(msg_sizes,null,microseconds_collective,model_size>1e6 ? 1 : 5 /*repeats*/,false,true /*only collectives*/);
nt.compute2();
//length of the network traffic queue based on log-tree rollup (2 log(nodes))
int network_queue_length = mp._single_node_mode || H2O.CLOUD.size() == 1? 1 : 2*(int)Math.floor(Math.log(H2O.CLOUD.size())/Math.log(2));
// heuristics
double flops_overhead_per_row = 50;
if (mp._activation == DeepLearningParameters.Activation.Maxout || mp._activation == DeepLearningParameters.Activation.MaxoutWithDropout) {
flops_overhead_per_row *= 8;
} else if (mp._activation == DeepLearningParameters.Activation.Tanh || mp._activation == DeepLearningParameters.Activation.TanhWithDropout) {
flops_overhead_per_row *= 5;
}
// target fraction of comm vs cpu time: 5%
double fraction = mp._single_node_mode || H2O.CLOUD.size() == 1 ? 1e-3 : mp._target_ratio_comm_to_comp; //one single node mode, there's no model averaging effect, so less need to shorten the M/R iteration
// estimate the time for communication (network) and training (compute)
model.time_for_communication_us = (H2O.CLOUD.size() == 1 ? 1e4 /* add 10ms for single-node */ : 1e5 /* add 100ms for multi-node MR overhead */) + network_queue_length * microseconds_collective[1];
double time_per_row_us = (flops_overhead_per_row * model_size + 10000 * model.model_info().units[0]) / (total_gflops * 1e9) / H2O.SELF._heartbeat._cpus_allowed * 1e6;
assert(!Double.isNaN(time_per_row_us));
// compute the optimal number of training rows per iteration
// fraction := time_comm_us / (time_comm_us + tspi * time_per_row_us) ==> tspi = (time_comm_us/fraction - time_comm_us)/time_per_row_us
tspi = (long)((model.time_for_communication_us / fraction - model.time_for_communication_us)/ time_per_row_us);
tspi = Math.min(tspi, (mp._single_node_mode ? 1 : H2O.CLOUD.size()) * numRows * 10); //not more than 10x of what train_samples_per_iteration=-1 would do
// If the number is close to a multiple of epochs, use that -> prettier scoring
if (tspi > numRows && Math.abs(tspi % numRows)/(double)numRows < 0.2) tspi -= tspi % numRows;
tspi = Math.min(tspi, (long)(mp._epochs * numRows / 10)); //limit to number of epochs desired, but at least 10 iterations total
if (H2O.CLOUD.size() == 1 || mp._single_node_mode) {
tspi = Math.min(tspi, 10*(int)(1e6/time_per_row_us)); //in single-node mode, only run for at most 10 seconds
}
tspi = Math.max(1, tspi); //at least 1 row
tspi = Math.min(100000*H2O.CLOUD.size(), tspi); //at most 100k rows per node for initial guess - can always relax later on
if (!mp._quiet_mode) {
Log.info("Auto-tuning parameter 'train_samples_per_iteration':");
Log.info("Estimated compute power : " + Math.round(total_gflops*100)/100 + " GFlops");
Log.info("Estimated time for comm : " + PrettyPrint.usecs((long) model.time_for_communication_us));
Log.info("Estimated time per row : " + ((long)time_per_row_us > 0 ? PrettyPrint.usecs((long) time_per_row_us) : time_per_row_us + " usecs"));
Log.info("Estimated training speed: " + (int)(1e6/time_per_row_us) + " rows/sec");
Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to auto-tuned value: " + tspi);
}
} else {
// limit user-given value to number of epochs desired
tspi = Math.max(1, Math.min(tspi, (long) (mp._epochs * numRows)));
}
assert(tspi != 0 && tspi != -1 && tspi != -2 && tspi >= 1);
return tspi;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy