hex.schemas.AggregatorV99 Maven / Gradle / Ivy
package hex.schemas;
import hex.DataInfo;
import hex.aggregator.Aggregator;
import hex.aggregator.AggregatorModel;
import water.api.API;
import water.api.schemas3.ModelParametersSchemaV3;
import static hex.pca.PCAModel.PCAParameters;
public class AggregatorV99 extends ModelBuilderSchema {
public static final class AggregatorParametersV99 extends ModelParametersSchemaV3 {
static public String[] fields = new String[] {
"model_id",
"training_frame",
"response_column",
"ignored_columns",
"ignore_const_cols",
"target_num_exemplars",
"rel_tol_num_exemplars",
// "radius_scale",
"transform",
"categorical_encoding",
"save_mapping_frame",
"num_iteration_without_new_exemplar",
// "pca_method",
// "k",
// "max_iterations",
// "seed",
// "use_all_factor_levels",
// "max_runtime_secs"
"export_checkpoints_dir"
};
// @API(help = "Radius scaling", gridable = true)
// public double radius_scale;
@API(help = "Transformation of training data", values = { "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE" }, gridable = true, level= API.Level.expert) // TODO: pull out of categorical class
public DataInfo.TransformType transform;
@API(help = "Method for computing PCA (Caution: GLRM is currently experimental and unstable)", values = { "GramSVD", "Power", "Randomized", "GLRM" }, gridable = true, level= API.Level.expert)
public PCAParameters.Method pca_method;
@API(help = "Rank of matrix approximation", direction = API.Direction.INOUT, gridable = true, level= API.Level.secondary)
public int k;
@API(help = "Maximum number of iterations for PCA", direction = API.Direction.INOUT, gridable = true, level= API.Level.expert)
public int max_iterations;
@API(help = "Targeted number of exemplars", direction = API.Direction.INOUT, gridable = true, level= API.Level.secondary)
public int target_num_exemplars;
@API(help = "Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50 percents)", direction = API.Direction.INOUT, gridable = true, level= API.Level.secondary)
public double rel_tol_num_exemplars;
@API(help = "RNG seed for initialization", direction = API.Direction.INOUT, level= API.Level.secondary)
public long seed;
@API(help = "Whether first factor level is included in each categorical expansion", direction = API.Direction.INOUT, level= API.Level.expert)
public boolean use_all_factor_levels;
@API(help = "Whether to export the mapping of the aggregated frame", direction = API.Direction.INOUT, level= API.Level.expert)
public boolean save_mapping_frame;
@API(help = "The number of iterations to run before aggregator exits if the number of exemplars collected didn't change", direction = API.Direction.INOUT, level= API.Level.expert)
public int num_iteration_without_new_exemplar;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy