hex.schemas.GBMV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.tree.gbm.GBM;
import hex.tree.gbm.GBMModel.GBMParameters;
import water.api.API;
import water.api.schemas3.KeyValueV3;
public class GBMV3 extends SharedTreeV3 {
public static final class GBMParametersV3 extends SharedTreeV3.SharedTreeParametersV3 {
static public String[] fields = new String[] {
"model_id",
"training_frame",
"validation_frame",
"nfolds",
"keep_cross_validation_models",
"keep_cross_validation_predictions",
"keep_cross_validation_fold_assignment",
"score_each_iteration",
"score_tree_interval",
"fold_assignment",
"fold_column",
"response_column",
"ignored_columns",
"ignore_const_cols",
"offset_column",
"weights_column",
"balance_classes",
"class_sampling_factors",
"max_after_balance_size",
"max_confusion_matrix_size",
"ntrees",
"max_depth",
"min_rows",
"nbins",
"nbins_top_level",
"nbins_cats",
"r2_stopping",
"stopping_rounds",
"stopping_metric",
"stopping_tolerance",
"max_runtime_secs",
"seed",
"build_tree_one_node",
"learn_rate",
"learn_rate_annealing",
"distribution",
"quantile_alpha",
"tweedie_power",
"huber_alpha",
"checkpoint",
"sample_rate",
"sample_rate_per_class",
"col_sample_rate",
"col_sample_rate_change_per_level",
"col_sample_rate_per_tree",
"min_split_improvement",
"histogram_type",
"max_abs_leafnode_pred",
"pred_noise_bandwidth",
"categorical_encoding",
"calibrate_model",
"calibration_frame",
"calibration_method",
"custom_metric_func",
"custom_distribution_func",
"export_checkpoints_dir",
"in_training_checkpoints_dir",
"in_training_checkpoints_tree_interval",
"monotone_constraints",
"check_constant_response",
"gainslift_bins",
"auc_type",
"interaction_constraints"
};
// Input fields
@API(help="Learning rate (from 0.0 to 1.0)", gridable = true)
public double learn_rate;
@API(help="Scale the learning rate by this factor after each tree (e.g., 0.99 or 0.999) ", level = API.Level.secondary, gridable = true)
public double learn_rate_annealing;
@API(help = "Row sample rate per tree (from 0.0 to 1.0)", gridable = true)
public double sample_rate;
@API(help="Column sample rate (from 0.0 to 1.0)", level = API.Level.critical, gridable = true)
public double col_sample_rate;
@API(help = "A mapping representing monotonic constraints. Use +1 to enforce an increasing constraint and -1 to specify a decreasing constraint.", level = API.Level.secondary)
public KeyValueV3[] monotone_constraints;
@API(help="Maximum absolute value of a leaf node prediction", level = API.Level.expert, gridable = true)
public double max_abs_leafnode_pred;
@API(help="Bandwidth (sigma) of Gaussian multiplicative noise ~N(1,sigma) for tree node predictions", level = API.Level.expert, gridable = true)
public double pred_noise_bandwidth;
@API(help="A set of allowed column interactions.", level= API.Level.expert)
public String[][] interaction_constraints;
// // TODO debug only, remove!
// @API(help="Internal flag, use new version of histo tsk if set", level = API.Level.expert, gridable = false)
// public boolean use_new_histo_tsk;
// @API(help="Use with new histo task only! Internal flag, number of columns processed in parallel", level = API.Level.expert, gridable = false)
// public int col_block_sz = 5;
// @API(help="Use with new histo task only! Min threads to be run in parallel", level = API.Level.expert, gridable = false)
// public int min_threads = -1;
// @API(help="Use with new histo task only! Share histo (and use CAS) instead of making private copies", level = API.Level.expert, gridable = false)
// public boolean shared_histo;
// @API(help="Use with new histo task only! Access rows in order of the dataset, not in order of leafs ", level = API.Level.expert, gridable = false)
// public boolean unordered;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy