hex.schemas.ModelSelectionModelV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.modelselection.ModelSelectionModel;
import water.api.API;
import water.api.schemas3.KeyV3;
import water.api.schemas3.ModelOutputSchemaV3;
import water.api.schemas3.ModelSchemaV3;
public class ModelSelectionModelV3 extends ModelSchemaV3 {
public static final class ModelSelectionModelOutputV3 extends ModelOutputSchemaV3 {
@API(help="Names of predictors in the best predictor subset")
String[][] best_predictors_subset;
@API(help="R2 values of all possible predictor subsets. Only for mode='allsubsets' or 'maxr'.")
double[] best_r2_values; // store the best R2 values of the best models with fix number of predictors
@API(help="at each predictor subset size, the predictor added is collected in this array. Not for mode = " +
"'backward'.")
String[][] predictors_added_per_step;
@API(help="at each predictor subset size, the predictor removed is collected in this array.")
String[][] predictors_removed_per_step;
@API(help="p-values of chosen predictor subsets at each subset size. Only for model='backward'.")
double[][] coef_p_values;
@API(help="z-values of chosen predictor subsets at each subset size. Only for model='backward'.")
double[][] z_values;
@API(help="Key of models containing best 1-predictor model, best 2-predictors model, ....")
KeyV3.ModelKeyV3[] best_model_ids;
@API(help="arrays of string arrays containing coefficient names of best 1-predictor model, best 2-predictors model, ....")
String[][] coefficient_names;
@API(help="store coefficient values for each predictor subset. Only for maxrsweep when build_glm_model is false.")
double[][] coefficient_values;
@API(help="store standardized coefficient values for each predictor subset. Only for maxrsweep when build_glm_model is false.")
double[][] coefficient_values_normalized;
@Override
public ModelSelectionModelOutputV3 fillFromImpl(ModelSelectionModel.ModelSelectionModelOutput impl) {
super.fillFromImpl(impl); // fill in the best_model_predictors_r2 table here when done
return this;
}
}
public ModelSelectionV3.ModelSelectionParametersV3 createParametersSchema() { return new ModelSelectionV3.ModelSelectionParametersV3(); }
public ModelSelectionModelOutputV3 createOutputSchema() { return new ModelSelectionModelOutputV3();}
@Override
public ModelSelectionModel createImpl() {
ModelSelectionModel.ModelSelectionParameters parms = parameters.createImpl();
return new ModelSelectionModel(model_id.key(), parms, null);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy