hex.schemas.PSVMV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.genmodel.algos.psvm.KernelType;
import hex.psvm.PSVM;
import hex.psvm.PSVMModel;
import water.api.API;
import water.api.schemas3.ModelParametersSchemaV3;
public class PSVMV3 extends ModelBuilderSchema {
public static final class PSVMParametersV3 extends ModelParametersSchemaV3 {
public static final String[] fields = new String[]{
"model_id",
"training_frame",
"validation_frame",
"response_column",
"ignored_columns",
"ignore_const_cols",
"hyper_param",
"kernel_type",
"gamma",
"rank_ratio",
"positive_weight",
"negative_weight",
"disable_training_metrics",
"sv_threshold",
"fact_threshold",
"feasible_threshold",
"surrogate_gap_threshold",
"mu_factor",
"max_iterations",
"seed",
};
@API(help = "Penalty parameter C of the error term", gridable = true)
public double hyper_param;
@API(help = "Type of used kernel", values = {"gaussian"})
public KernelType kernel_type;
@API(help = "Coefficient of the kernel (currently RBF gamma for gaussian kernel, -1 means 1/#features)", gridable = true)
public double gamma;
@API(help = "Desired rank of the ICF matrix expressed as an ration of number of input rows (-1 means use sqrt(#rows)).", gridable = true)
public double rank_ratio;
@API(help = "Weight of positive (+1) class of observations")
public double positive_weight;
@API(help = "Weight of positive (-1) class of observations")
public double negative_weight;
@API(help = "Disable calculating training metrics (expensive on large datasets)")
public boolean disable_training_metrics;
@API(help = "Threshold for accepting a candidate observation into the set of support vectors", level = API.Level.secondary)
public double sv_threshold;
@API(help = "Maximum number of iteration of the algorithm", level = API.Level.secondary)
public int max_iterations;
@API(help = "Convergence threshold of the Incomplete Cholesky Factorization (ICF)", level = API.Level.expert)
public double fact_threshold;
@API(help = "Convergence threshold for primal-dual residuals in the IPM iteration", level = API.Level.expert)
public double feasible_threshold;
@API(help = "Feasibility criterion of the surrogate duality gap (eta)", level = API.Level.expert)
public double surrogate_gap_threshold;
@API(help = "Increasing factor mu", level = API.Level.expert)
public double mu_factor;
@API(help = "Seed for pseudo random number generator (if applicable)", gridable = true)
public long seed;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy