hex.schemas.SVDV99 Maven / Gradle / Ivy
package hex.schemas;
import hex.DataInfo;
import hex.svd.SVD;
import hex.svd.SVDModel.SVDParameters;
import water.api.API;
import water.api.schemas3.ModelParametersSchemaV3;
public class SVDV99 extends ModelBuilderSchema {
public static final class SVDParametersV99 extends ModelParametersSchemaV3 {
static public String[] fields = new String[] {
"model_id",
"training_frame",
"validation_frame",
"ignored_columns",
"ignore_const_cols",
"score_each_iteration",
"transform",
"svd_method",
"nv",
"max_iterations",
"seed",
"keep_u",
"u_name",
"use_all_factor_levels",
"max_runtime_secs",
"export_checkpoints_dir"
};
@API(help = "Transformation of training data", values = { "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE" }) // TODO: pull out of categorical class
public DataInfo.TransformType transform;
@API(help = "Method for computing SVD (Caution: Randomized is currently experimental and unstable)", values = { "GramSVD", "Power", "Randomized" }) // TODO: pull out of enum class
public SVDParameters.Method svd_method;
@API(help = "Number of right singular vectors")
public int nv;
@API(help = "Maximum iterations")
public int max_iterations;
@API(help = "RNG seed for k-means++ initialization")
public long seed;
@API(help = "Save left singular vectors?")
public boolean keep_u;
@API(help = "Frame key to save left singular vectors")
public String u_name;
@API(help = "Whether first factor level is included in each categorical expansion", direction = API.Direction.INOUT)
public boolean use_all_factor_levels;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy