hex.schemas.Word2VecV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.word2vec.Word2Vec;
import hex.word2vec.Word2VecModel.Word2VecParameters;
import water.api.API;
import water.api.schemas3.KeyV3;
import water.api.schemas3.ModelParametersSchemaV3;
public class Word2VecV3 extends ModelBuilderSchema {
public static final class Word2VecParametersV3 extends ModelParametersSchemaV3 {
public static String[] fields = new String[] {
"model_id",
"training_frame",
"min_word_freq",
"word_model",
"norm_model",
"vec_size",
"window_size",
"sent_sample_rate",
"init_learning_rate",
"epochs",
"pre_trained",
"max_runtime_secs",
"export_checkpoints_dir"
};
@API(help="Set size of word vectors")
public int vec_size;
@API(help="Set max skip length between words")
public int window_size;
@API(help="Set threshold for occurrence of words. Those that appear with higher frequency in the training data\n" +
"\t\twill be randomly down-sampled; useful range is (0, 1e-5)")
public float sent_sample_rate;
@API(help="Use Hierarchical Softmax", values = {"HSM"})
public Word2Vec.NormModel norm_model;
@API(help="Number of training iterations to run")
public int epochs;
@API(help="This will discard words that appear less than times")
public int min_word_freq;
@API(help="Set the starting learning rate")
public float init_learning_rate;
@API(help="The word model to use (SkipGram or CBOW)", values = {"SkipGram", "CBOW"})
public Word2Vec.WordModel word_model;
@API(help="Id of a data frame that contains a pre-trained (external) word2vec model")
public KeyV3.FrameKeyV3 pre_trained;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy