hex.svd.SVDModel Maven / Gradle / Ivy
package hex.svd;
import hex.*;
import water.*;
import water.codegen.CodeGeneratorPipeline;
import water.fvec.Chunk;
import water.fvec.Frame;
import water.udf.CFuncRef;
import water.util.JCodeGen;
import water.util.SBPrintStream;
import java.util.ArrayList;
public class SVDModel extends Model {
public static class SVDParameters extends Model.Parameters {
public String algoName() { return "SVD"; }
public String fullName() { return "Singular Value Decomposition"; }
public String javaName() { return SVDModel.class.getName(); }
@Override public long progressUnits() {
switch(_svd_method) {
case GramSVD: return 2;
case Power: return 1 + _nv;
case Randomized: return 5 + _max_iterations;
default: return _nv;
}
}
public DataInfo.TransformType _transform = DataInfo.TransformType.NONE; // Data transformation (demean to compare with PCA)
public Method _svd_method = Method.GramSVD; // Method for computing SVD
public int _nv = 1; // Number of right singular vectors to calculate
public int _max_iterations = 1000; // Maximum number of iterations
// public Key _u_key; // Frame key for left singular vectors (U)
public String _u_name;
// public Key _v_key; // Frame key for right singular vectors (V)
public String _v_name;
public boolean _keep_u = true; // Should left singular vectors be saved in memory? (Only applies if _only_v = false)
public boolean _save_v_frame = true; // Should right singular vectors be saved as a frame?
public boolean _only_v = false; // For power method (others ignore): Compute only right singular vectors? (Faster if true)
public boolean _use_all_factor_levels = true; // When expanding categoricals, should first level be dropped?
public boolean _impute_missing = false; // Should missing numeric values be imputed with the column mean?
public enum Method {
GramSVD, Power, Randomized
}
}
public static class SVDOutput extends Model.Output {
// Iterations executed (Power and Randomized methods only)
public int _iterations;
// Right singular vectors (V)
public double[][] _v; // Used internally for PCA and GLRM
public Key _v_key;
// Singular values (diagonal of D)
public double[] _d;
// Frame key for left singular vectors (U)
public Key _u_key;
// Number of categorical and numeric columns
public int _ncats;
public int _nnums;
// Number of good rows in training frame (not skipped)
public long _nobs;
// Total column variance for expanded and transformed data
public double _total_variance;
// Categorical offset vector
public int[] _catOffsets;
// If standardized, mean of each numeric data column
public double[] _normSub;
// If standardized, one over standard deviation of each numeric data column
public double[] _normMul;
// Permutation matrix mapping training col indices to adaptedFrame
public int[] _permutation;
// Expanded column names of adapted training frame
public String[] _names_expanded;
// variables for building up a scoring history
public ArrayList _history_average_SEE = new ArrayList<>(); // for randomized SVD
public ArrayList _history_err = new ArrayList<>(); // for power SVD method
public ArrayList _history_eigenVectorIndex = new ArrayList<>(); // store which eigenvector we are working on
public ArrayList _training_time_ms = new ArrayList<>();
public SVDOutput(SVD b) { super(b); }
@Override public ModelCategory getModelCategory() { return ModelCategory.DimReduction; }
}
public SVDModel(Key selfKey, SVDParameters parms, SVDOutput output) { super(selfKey, parms, output); }
@Override protected Futures remove_impl(Futures fs, boolean cascade) {
Keyed.remove(_output._u_key, fs, true);
Keyed.remove(_output._v_key, fs, true);
return super.remove_impl(fs, cascade);
}
/** Write out K/V pairs */
@Override protected AutoBuffer writeAll_impl(AutoBuffer ab) {
ab.putKey(_output._u_key);
ab.putKey(_output._v_key);
return super.writeAll_impl(ab);
}
@Override protected Keyed readAll_impl(AutoBuffer ab, Futures fs) {
ab.getKey(_output._u_key,fs);
ab.getKey(_output._v_key,fs);
return super.readAll_impl(ab,fs);
}
@Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
return new ModelMetricsSVD.SVDModelMetrics(_parms._nv);
}
public static class ModelMetricsSVD extends ModelMetricsUnsupervised {
public ModelMetricsSVD(Model model, Frame frame, CustomMetric customMetric) {
super(model, frame, 0, Double.NaN, customMetric);
}
// SVD currently does not have any model metrics to compute during scoring
public static class SVDModelMetrics extends MetricBuilderUnsupervised {
public SVDModelMetrics(int dims) {
_work = new double[dims];
}
@Override public double[] perRow(double[] preds, float[] dataRow, Model m) { return preds; }
@Override public ModelMetrics makeModelMetrics(Model m, Frame f) {
return m.addModelMetrics(new ModelMetricsSVD(m, f, _customMetric));
}
}
}
@Override protected PredictScoreResult predictScoreImpl(Frame orig, Frame adaptedFr, String destination_key, final Job j, boolean computeMetrics, CFuncRef customMetricFunc) {
Frame adaptFrm = new Frame(adaptedFr);
for(int i = 0; i < _parms._nv; i++)
adaptFrm.add("PC"+String.valueOf(i+1),adaptFrm.anyVec().makeZero());
new MRTask() {
@Override public void map( Chunk chks[] ) {
if (isCancelled() || j != null && j.stop_requested()) return;
double tmp [] = new double[_output._names.length];
double preds[] = new double[_parms._nv];
for( int row = 0; row < chks[0]._len; row++) {
double p[] = score0(chks, row, tmp, preds);
for( int c=0; cmake(destination_key), f.names(), f.vecs());
DKV.put(f);
ModelMetrics.MetricBuilder> mb = makeMetricBuilder(null);
return new PredictScoreResult(mb, f, f);
}
@Override protected double[] score0(double data[/*ncols*/], double preds[/*nclasses+1*/]) {
int numStart = _output._catOffsets[_output._catOffsets.length-1];
assert data.length == _output._permutation.length;
for(int i = 0; i < _parms._nv; i++) {
preds[i] = 0;
for (int j = 0; j < _output._ncats; j++) {
double tmp = data[_output._permutation[j]];
int last_cat = _output._catOffsets[j+1]-_output._catOffsets[j]-1; // Missing categorical values are mapped to extra (last) factor
int level = Double.isNaN(tmp) ? last_cat : (int)tmp - (_parms._use_all_factor_levels ? 0:1); // Reduce index by 1 if first factor level dropped during training
if (level < 0 || level > last_cat) continue; // Skip categorical level in test set but not in train
preds[i] += _output._v[_output._catOffsets[j]+level][i];
}
int dcol = _output._ncats;
int vcol = numStart;
for (int j = 0; j < _output._nnums; j++) {
preds[i] += (data[_output._permutation[dcol]] - _output._normSub[j]) * _output._normMul[j] * _output._v[vcol][i];
dcol++; vcol++;
}
}
return preds;
}
@Override protected SBPrintStream toJavaInit(SBPrintStream sb, CodeGeneratorPipeline fileCtx) {
sb = super.toJavaInit(sb, fileCtx);
sb.ip("public boolean isSupervised() { return " + isSupervised() + "; }").nl();
sb.ip("public int nfeatures() { return "+_output.nfeatures()+"; }").nl();
sb.ip("public int nclasses() { return "+_parms._nv+"; }").nl();
if (_output._nnums > 0) {
JCodeGen.toStaticVar(sb, "NORMMUL", _output._normMul, "Standardization/Normalization scaling factor for numerical variables.");
JCodeGen.toStaticVar(sb, "NORMSUB", _output._normSub, "Standardization/Normalization offset for numerical variables.");
}
JCodeGen.toStaticVar(sb, "CATOFFS", _output._catOffsets, "Categorical column offsets.");
JCodeGen.toStaticVar(sb, "PERMUTE", _output._permutation, "Permutation index vector.");
JCodeGen.toStaticVar(sb, "EIGVECS", _output._v, "Eigenvector matrix.");
return sb;
}
@Override protected void toJavaPredictBody(SBPrintStream bodySb,
CodeGeneratorPipeline classCtx,
CodeGeneratorPipeline fileCtx,
final boolean verboseCode) {
bodySb.i().p("java.util.Arrays.fill(preds,0);").nl();
final int cats = _output._ncats;
final int nums = _output._nnums;
bodySb.i().p("final int nstart = CATOFFS[CATOFFS.length-1];").nl();
bodySb.i().p("for(int i = 0; i < ").p(_parms._nv).p("; i++) {").nl();
// Categorical columns
bodySb.i(1).p("for(int j = 0; j < ").p(cats).p("; j++) {").nl();
bodySb.i(2).p("double d = data[PERMUTE[j]];").nl();
bodySb.i(2).p("int last = CATOFFS[j+1]-CATOFFS[j]-1;").nl();
bodySb.i(2).p("int c = Double.isNaN(d) ? last : (int)d").p(_parms._use_all_factor_levels ? ";":"-1;").nl();
bodySb.i(2).p("if(c < 0 || c > last) continue;").nl();
bodySb.i(2).p("preds[i] += EIGVECS[CATOFFS[j]+c][i];").nl();
bodySb.i(1).p("}").nl();
// Numeric columns
if (_output._nnums > 0) {
bodySb.i(1).p("for(int j = 0; j < ").p(nums).p("; j++) {").nl();
bodySb.i(2).p("preds[i] += (data[PERMUTE[j" + (cats > 0 ? "+" + cats : "") + "]]-NORMSUB[j])*NORMMUL[j]*EIGVECS[j" + (cats > 0 ? "+ nstart" : "") + "][i];").nl();
bodySb.i(1).p("}").nl();
}
bodySb.i().p("}").nl();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy