
hex.glm.GLMValidation Maven / Gradle / Ivy
package hex.glm;
import hex.*;
import hex.ModelMetrics.MetricBuilder;
import hex.ModelMetricsBinomial.MetricBuilderBinomial;
import hex.ModelMetricsBinomialGLM.ModelMetricsMultinomialGLM;
import hex.ModelMetricsMultinomial.MetricBuilderMultinomial;
import hex.ModelMetricsRegression.MetricBuilderRegression;
import hex.ModelMetricsSupervised.MetricBuilderSupervised;
import hex.glm.GLMModel.GLMParameters;
import hex.glm.GLMModel.GLMParameters.Family;
import water.DKV;
import water.H2O;
import water.fvec.Frame;
import water.util.ArrayUtils;
import water.util.MathUtils;
/**
* Class for GLMValidation.
*
* @author tomasnykodym
*
*/
public class GLMValidation extends MetricBuilderSupervised {
double residual_deviance;
double null_deviance;
final double _ymu;
final double _ymuLink;
final double [] _ymus;
long _nobs;
double _aic;// internal AIC used only for poisson family!
private double _aic2;// internal AIC used only for poisson family!
final GLMModel.GLMParameters _parms;
final private int _rank;
final double _threshold;
MetricBuilder _metricBuilder;
final boolean _intercept;
final boolean _computeMetrics;
public GLMValidation(String[] domain, double [] ymu, GLMParameters parms, int rank, double threshold, boolean computeMetrics, boolean intercept){
super(domain == null?1:domain.length, domain);
_rank = rank;
_parms = parms;
_threshold = threshold;
_computeMetrics = computeMetrics;
_intercept = intercept;
if(parms._family == Family.multinomial) {
_ymus = ymu;
assert _ymus.length == domain.length;
_ymu = Double.NaN;
_ymuLink = Double.NaN;
} else {
_ymu = parms._intercept ? ymu[0] : parms._family == Family.binomial ? .5 : 0;
_ymuLink = _parms.link(_ymu);
_ymus = null;
}
if(_computeMetrics) {
switch(_parms._family){
case binomial:
_metricBuilder = new MetricBuilderBinomial(domain);
break;
case multinomial:
_metricBuilder = new MetricBuilderMultinomial(domain.length,domain);
((MetricBuilderMultinomial)_metricBuilder)._priorDistribution = _ymus;
break;
default:
_metricBuilder = new MetricBuilderRegression();
break;
}
}
}
public double explainedDev(){
return 1.0 - residualDeviance()/nullDeviance();
}
@Override public double[] perRow(double ds[], float[] yact, Model m) {
return perRow(ds, yact, 1, 0, m);
}
@Override public double[] perRow(double ds[], float[] yact, double weight, double offset, Model m) {
if(weight == 0)return ds;
_metricBuilder.perRow(ds,yact,weight,offset,m);
if(!ArrayUtils.hasNaNsOrInfs(ds) && !ArrayUtils.hasNaNsOrInfs(yact)) {
if(_parms._family == Family.multinomial)
add2(yact[0], ds, weight, offset);
else if (_parms._family == Family.binomial)
add2(yact[0], ds[2], weight, offset);
else
add2(yact[0], ds[0], weight, offset);
}
return ds;
}
// public GLMValidation(Key dataKey, double ymu, GLMParameters glm, int rank){
// _rank = rank;
// _ymu = ymu;
// _glm = glm;
// _auc_bldr = (glm._family == Family.binomial) ? new AUC2.AUCBuilder(AUC2.NBINS) : null;
// this.dataKey = dataKey;
// }
// @Override public double[] perRow(double ds[], float[] yact, Model m, double[] mean) {
// super.perRow(ds, yact, m, mean);
// return ds; // Flow coding
// }
transient double [] _ds = new double[3];
transient float [] _yact = new float[1];
public void add(double yreal, double [] ymodel, double weight, double offset) {
if(weight == 0)return;
_yact[0] = (float) yreal;
if(_computeMetrics)
_metricBuilder.perRow(ymodel, _yact, weight, offset, null);
add2(yreal, ymodel, weight, offset );
}
public void add(double yreal, double ymodel, double weight, double offset) {
if(weight == 0)return;
_yact[0] = (float) yreal;
if(_parms._family == Family.binomial) {
_ds[0] = ymodel > _threshold ? 1 : 0;
_ds[1] = 1 - ymodel;
_ds[2] = ymodel;
} else {
_ds[0] = ymodel;
}
if(_computeMetrics) {
assert !(_metricBuilder instanceof MetricBuilderMultinomial):"using incorrect add call fro multinomial";
_metricBuilder.perRow(_ds, _yact, weight, offset, null);
}
add2(yreal, ymodel, weight, offset );
}
private void add2(double yreal, double ymodel [] , double weight, double offset) {
_wcount += weight;
++_nobs;
int c = (int)yreal;
residual_deviance -= 2 * weight * Math.log(ymodel[c+1]);
if(offset != 0)
null_deviance -= 2 * weight * Math.log(offset + (_intercept?Math.exp(_ymus[c]):0));
else
null_deviance -= 2 * weight * Math.log(_intercept?_ymus[c]:0);
}
private void add2(double yreal, double ymodel, double weight, double offset) {
_wcount += weight;
++_nobs;
residual_deviance += weight * _parms.deviance(yreal, ymodel);
double ynull = offset == 0 ? _ymu : _parms.linkInv(offset + _ymuLink /* Note: _ymuLink in this case is expected to be link(c), where c is constant term of a model fitted with the given offset and no predictors */);
null_deviance += weight * _parms.deviance(yreal, ynull);
if (_parms._family == Family.poisson) { // AIC for poisson
long y = Math.round(yreal);
double logfactorial = 0;
for (long i = 2; i <= y; ++i)
logfactorial += Math.log(i);
_aic2 += weight * (yreal * Math.log(ymodel) - logfactorial - ymodel);
}
}
public void reduce(GLMValidation v){
if(_computeMetrics)
_metricBuilder.reduce(v._metricBuilder);
residual_deviance += v.residual_deviance;
null_deviance += v.null_deviance;
_nobs += v._nobs;
_aic2 += v._aic2;
_wcount += v._wcount;
}
public final double nullDeviance() { return null_deviance;}
public final double residualDeviance() { return residual_deviance;}
public final long nullDOF() { return _nobs - (_intercept?1:0);}
public final long resDOF() { return _nobs - _rank;}
protected void computeAIC(){
_aic = 0;
switch( _parms._family) {
case gaussian:
_aic = _nobs * (Math.log(residual_deviance / _nobs * 2 * Math.PI) + 1) + 2;
break;
case binomial:
_aic = residual_deviance;
break;
case poisson:
_aic = -2*_aic2;
break; // AIC is set during the validation task
case gamma:
_aic = Double.NaN;
break;
case tweedie:
case multinomial:
_aic = Double.NaN;
break;
default:
assert false : "missing implementation for family " + _parms._family;
}
_aic += 2*_rank;
}
@Override
public String toString(){
if(_metricBuilder != null)
return _metricBuilder.toString() + ", explained_dev = " + MathUtils.roundToNDigits(1 - residual_deviance / null_deviance,5);
else return "explained dev = " + MathUtils.roundToNDigits(1 - residual_deviance / null_deviance,5);
}
@Override public ModelMetrics makeModelMetrics( Model m, Frame f) {
GLMModel gm = (GLMModel)m;
computeAIC();
ModelMetrics metrics = _metricBuilder.makeModelMetrics(gm, f);
if (_parms._family == Family.binomial) {
ModelMetricsBinomial metricsBinommial = (ModelMetricsBinomial) metrics;
metrics = new ModelMetricsBinomialGLM(m, f, metrics._MSE, _domain, metricsBinommial._sigma, metricsBinommial._auc, metricsBinommial._logloss, residualDeviance(), nullDeviance(), _aic, nullDOF(), resDOF());
} else if( _parms._family == Family.multinomial) {
ModelMetricsMultinomial metricsMultinomial = (ModelMetricsMultinomial) metrics;
metrics = new ModelMetricsMultinomialGLM(m, f, metricsMultinomial._MSE, metricsMultinomial._domain, metricsMultinomial._sigma, metricsMultinomial._cm, metricsMultinomial._hit_ratios, metricsMultinomial._logloss, residualDeviance(), nullDeviance(), _aic, nullDOF(), resDOF());
} else {
ModelMetricsRegression metricsRegression = (ModelMetricsRegression) metrics;
metrics = new ModelMetricsRegressionGLM(m, f, metricsRegression._MSE, metricsRegression._sigma, residualDeviance(), residualDeviance()/_wcount, nullDeviance(), _aic, nullDOF(), resDOF());
}
return gm._output.addModelMetrics(metrics); // Update the metrics in-place with the GLM version
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy