
hex.schemas.KMeansV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.kmeans.KMeans;
import hex.kmeans.KMeansModel.KMeansParameters;
import water.api.API;
import water.api.ClusteringModelParametersSchema;
import water.api.KeyV3;
public class KMeansV3 extends ClusteringModelBuilderSchema {
public static final class KMeansParametersV3 extends ClusteringModelParametersSchema {
static public String[] fields = new String[] {
"model_id",
"training_frame",
"validation_frame",
"nfolds",
"keep_cross_validation_predictions",
"fold_assignment",
"fold_column",
"ignored_columns",
"ignore_const_cols",
"score_each_iteration",
"k",
"user_points",
"max_iterations",
"standardize",
"seed",
"init"
};
// Input fields
@API(help = "User-specified points", required = false)
public KeyV3.FrameKeyV3 user_points;
@API(help="Maximum training iterations", gridable = true)
public int max_iterations; // Max iterations
@API(help = "Standardize columns", level = API.Level.secondary, gridable = true)
public boolean standardize = true;
@API(help = "RNG Seed", level = API.Level.expert /* tested, works: , dependsOn = {"k", "max_iterations"} */, gridable = true)
public long seed;
@API(help = "Initialization mode", values = { "Random", "PlusPlus", "Furthest", "User" }, gridable = true) // TODO: pull out of categorical class. . .
public KMeans.Initialization init;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy