All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.tree.DHistogram Maven / Gradle / Ivy

package hex.tree;

import sun.misc.Unsafe;
import water.*;
import water.fvec.Frame;
import water.fvec.Vec;
import water.nbhm.UtilUnsafe;
import water.util.*;

/** A Histogram, computed in parallel over a Vec.
 *
 *  

A {@code DHistogram} bins every value added to it, and computes a the * vec min and max (for use in the next split), and response mean and variance * for each bin. {@code DHistogram}s are initialized with a min, max and * number-of- elements to be added (all of which are generally available from * a Vec). Bins run from min to max in uniform sizes. If the {@code * DHistogram} can determine that fewer bins are needed (e.g. boolean columns * run from 0 to 1, but only ever take on 2 values, so only 2 bins are * needed), then fewer bins are used. * *

{@code DHistogram} are shared per-node, and atomically updated. There's * an {@code add} call to help cross-node reductions. The data is stored in * primitive arrays, so it can be sent over the wire. * *

If we are successively splitting rows (e.g. in a decision tree), then a * fresh {@code DHistogram} for each split will dynamically re-bin the data. * Each successive split will logarithmically divide the data. At the first * split, outliers will end up in their own bins - but perhaps some central * bins may be very full. At the next split(s), the full bins will get split, * and again until (with a log number of splits) each bin holds roughly the * same amount of data. This dynamic binning resolves a lot of problems with * picking the proper bin count or limits - generally a few more tree levels * will equal any fancy but fixed-size binning strategy. * * @author Cliff Click */ public final class DHistogram extends Iced { public final transient String _name; // Column name (for debugging) public final byte _isInt; // 0: float col, 1: int col, 2: categorical & int col public final char _nbin; // Bin count public final float _step; // Linear interpolation step per bin public final float _min, _maxEx; // Conservative Min/Max over whole collection. _maxEx is Exclusive. public double _bins[]; // Bins, shared, atomically incremented private double _sums[], _ssqs[]; // Sums & square-sums, shared, atomically incremented // Atomically updated float min/max protected float _min2, _maxIn; // Min/Max, shared, atomically updated. _maxIn is Inclusive. private static final Unsafe _unsafe = UtilUnsafe.getUnsafe(); static private final long _min2Offset; static private final long _max2Offset; static { try { _min2Offset = _unsafe.objectFieldOffset(DHistogram.class.getDeclaredField("_min2")); _max2Offset = _unsafe.objectFieldOffset(DHistogram.class.getDeclaredField("_maxIn")); } catch( Exception e ) { throw H2O.fail(); } } void setMin( float min ) { int imin = Float.floatToRawIntBits(min); float old = _min2; while( min < old && !_unsafe.compareAndSwapInt(this, _min2Offset, Float.floatToRawIntBits(old), imin ) ) old = _min2; } // Find Inclusive _max2 void setMax( float max ) { int imax = Float.floatToRawIntBits(max); float old = _maxIn; while( max > old && !_unsafe.compareAndSwapInt(this, _max2Offset, Float.floatToRawIntBits(old), imax ) ) old = _maxIn; } public DHistogram(String name, final int nbins, int nbins_cats, byte isInt, float min, float maxEx) { assert nbins > 1; assert nbins_cats > 1; assert maxEx > min : "Caller ensures "+maxEx+">"+min+", since if max==min== the column "+name+" is all constants"; _isInt = isInt; _name = name; _min=min; _maxEx=maxEx; // Set Exclusive max _min2 = Float.MAX_VALUE; // Set min/max to outer bounds _maxIn= -Float.MAX_VALUE; // See if we can show there are fewer unique elements than nbins. // Common for e.g. boolean columns, or near leaves. int xbins = isInt == 2 ? nbins_cats : nbins; if( isInt>0 && maxEx-min <= xbins ) { assert ((long)min)==min; // No overflow xbins = (char)((long)maxEx-(long)min); // Shrink bins _step = 1.0f; // Fixed stepsize } else { _step = xbins/(maxEx-min); // Step size for linear interpolation, using mul instead of div assert _step > 0 && !Float.isInfinite(_step); } _nbin = (char)xbins; // Do not allocate the big arrays here; wait for scoreCols to pick which cols will be used. } // Interpolate d to find bin# int bin( float col_data ) { if( Float.isNaN(col_data) ) return 0; // Always NAs to bin 0 if (Float.isInfinite(col_data)) // Put infinity to most left/right bin if (col_data<0) return 0; else return _bins.length-1; // When the model is exposed to new test data, we could have data that is // out of range of any bin - however this binning call only happens during // model-building. assert _min <= col_data && col_data < _maxEx : "Coldata "+col_data+" out of range "+this; int idx1 = (int)((col_data-_min)*_step); assert 0 <= idx1 && idx1 <= _bins.length : idx1 + " " + _bins.length; if( idx1 == _bins.length) idx1--; // Roundoff error allows idx1 to hit upper bound, so truncate return idx1; } float binAt( int b ) { return _min+b/_step; } public int nbins() { return _nbin; } public double bins(int b) { return _bins[b]; } // Big allocation of arrays void init() { assert _bins == null; _bins = MemoryManager.malloc8d(_nbin); init0(); } // Add one row to a bin found via simple linear interpolation. // Compute bin min/max. // Compute response mean & variance. void incr( float col_data, double y, double w ) { assert Float.isNaN(col_data) || Float.isInfinite(col_data) || (_min <= col_data && col_data < _maxEx) : "col_data "+col_data+" out of range "+this; int b = bin(col_data); // Compute bin# via linear interpolation water.util.AtomicUtils.DoubleArray.add(_bins,b,w); // Bump count in bin // Track actual lower/upper bound per-bin if (!Float.isInfinite(col_data)) { setMin(col_data); setMax(col_data); } if( y != 0 && w != 0) incr0(b,y,w); } // Merge two equal histograms together. Done in a F/J reduce, so no // synchronization needed. void add( DHistogram dsh ) { assert _isInt == dsh._isInt && _nbin == dsh._nbin && _step == dsh._step && _min == dsh._min && _maxEx == dsh._maxEx; assert (_bins == null && dsh._bins == null) || (_bins != null && dsh._bins != null); if( _bins == null ) return; ArrayUtils.add(_bins,dsh._bins); if( _min2 > dsh._min2 ) _min2 = dsh._min2 ; if( _maxIn < dsh._maxIn ) _maxIn = dsh._maxIn; add0(dsh); } // Inclusive min & max float find_min () { return _min2 ; } float find_maxIn() { return _maxIn; } // Exclusive max float find_maxEx() { return find_maxEx(_maxIn,_isInt); } static private float find_maxEx(float maxIn, int isInt ) { float ulp = Math.ulp(maxIn); if( isInt > 0 && 1 > ulp ) ulp = 1; float res = maxIn+ulp; return Float.isInfinite(res) ? maxIn : res; } // The initial histogram bins are setup from the Vec rollups. static public DHistogram[] initialHist(Frame fr, int ncols, int nbins, int nbins_cats, DHistogram hs[]) { Vec vecs[] = fr.vecs(); for( int c=0; c 0); } return hs; } static public DHistogram make(String name, final int nbins, int nbins_cats, byte isInt, float min, float maxEx) { return new DHistogram(name,nbins, nbins_cats, isInt, min, maxEx); } // Check for a constant response variable private boolean isConstantResponse() { double m = Double.NaN; for( int b=0; b<_bins.length; b++ ) { if( _bins[b] == 0 ) continue; if( var(b) > 1e-6) { Log.warn("Response should be constant, but variance of bin " + b + " (out of " + _bins.length + ") is " + var(b)); return false; } double mean = mean(b); if( mean != m ) if( Double.isNaN(m) ) m=mean; // Capture mean of first non-empty bin else if( !MathUtils.compare(m,mean,1e-5,1e-5) ) { Log.warn("Response should be constant, but mean of first non-empty bin is " + m + ", but another bin (" + b + ") has mean(b) = " + mean); return false; } } return true; } // Pretty-print a histogram @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(_name).append(":").append(_min).append("-").append(_maxEx).append(" step=" + (1 / _step) + " nbins=" + nbins() + " isInt=" + _isInt); if( _bins != null ) { for( int b=0; b<_bins.length; b++ ) { sb.append(String.format("\ncnt=%d, [%f - %f], mean/var=", _bins[b],_min+b/_step,_min+(b+1)/_step)); sb.append(String.format("%6.2f/%6.2f,", mean(b), var(b))); } sb.append('\n'); } return sb.toString(); } double mean(int b) { double n = _bins[b]; return n>0 ? _sums[b]/n : 0; } /** * compute the sample variance within a given bin * @param b bin id * @return sample variance (>= 0) */ double var (int b) { double n = _bins[b]; if( n<=1 ) return 0; return Math.max(0, (_ssqs[b] - _sums[b]*_sums[b]/n)/(n-1)); //not strictly consistent with what is done elsewhere (use n instead of n-1 to get there) } // Big allocation of arrays void init0() { _sums = MemoryManager.malloc8d(_nbin); _ssqs = MemoryManager.malloc8d(_nbin); } // Add one row to a bin found via simple linear interpolation. // Compute response mean & variance. // Done racily instead F/J map calls, so atomic void incr0( int b, double y, double w ) { AtomicUtils.DoubleArray.add(_sums,b,(float)(w*y)); //See 'HistogramTest' JUnit for float-casting rationalization AtomicUtils.DoubleArray.add(_ssqs,b,(float)(w*y*y)); } // Same, except square done by caller void incr1( int b, double y, double yy) { AtomicUtils.DoubleArray.add(_sums,b,(float)y); //See 'HistogramTest' JUnit for float-casting rationalization AtomicUtils.DoubleArray.add(_ssqs,b,(float)yy); } // Merge two equal histograms together. // Done in a F/J reduce, so no synchronization needed. void add0( DHistogram dsh ) { ArrayUtils.add(_sums, dsh._sums); ArrayUtils.add(_ssqs,dsh._ssqs); } // Compute a "score" for a column; lower score "wins" (is a better split). // Score is the sum of the MSEs when the data is split at a single point. // mses[1] == MSE for splitting between bins 0 and 1. // mses[n] == MSE for splitting between bins n-1 and n. public DTree.Split scoreMSE( int col, double min_rows ) { final int nbins = nbins(); assert nbins > 1; // Histogram arrays used for splitting, these are either the original bins // (for an ordered predictor), or sorted by the mean response (for an // unordered predictor, i.e. categorical predictor). double[] sums = _sums; double[] ssqs = _ssqs; double[] bins = _bins; int idxs[] = null; // and a reverse index mapping // For categorical (unordered) predictors, sort the bins by average // prediction then look for an optimal split. Currently limited to categoricals // where we're one-per-bin. No point for 3 or fewer bins as all possible // combinations (just 3) are tested without needing to sort. if( _isInt == 2 && _step == 1.0f && nbins >= 4 ) { // Sort the index by average response idxs = MemoryManager.malloc4(nbins+1); // Reverse index for( int i=0; i=0; b-- ) { double m0 = sums1[b+1], m1 = sums[b]; double s0 = ssqs1[b+1], s1 = ssqs[b]; double k0 = ns1 [b+1], k1 = bins[b]; if( k0==0 && k1==0 ) continue; sums1[b] = m0+m1; ssqs1[b] = s0+s1; ns1 [b] = k0+k1; assert MathUtils.compare(ns0[b]+ns1[b],tot,1e-5,1e-5); } // Now roll the split-point across the bins. There are 2 ways to do this: // split left/right based on being less than some value, or being equal/ // not-equal to some value. Equal/not-equal makes sense for categoricals // but both splits could work for any integral datatype. Do the less-than // splits first. int best=0; // The no-split double best_se0=Double.MAX_VALUE; // Best squared error double best_se1=Double.MAX_VALUE; // Best squared error byte equal=0; // Ranged check for( int b=1; b<=nbins-1; b++ ) { if( bins[b] == 0 ) continue; // Ignore empty splits if( ns0[b] < min_rows ) continue; if( ns1[b] < min_rows ) break; // ns1 shrinks at the higher bin#s, so if it fails once it fails always // We're making an unbiased estimator, so that MSE==Var. // Then Squared Error = MSE*N = Var*N // = (ssqs/N - mean^2)*N // = ssqs - N*mean^2 // = ssqs - N*(sum/N)(sum/N) // = ssqs - sum^2/N double se0 = ssqs0[b] - sums0[b]*sums0[b]/ns0[b]; double se1 = ssqs1[b] - sums1[b]*sums1[b]/ns1[b]; if( se0 < 0 ) se0 = 0; // Roundoff error; sometimes goes negative if( se1 < 0 ) se1 = 0; // Roundoff error; sometimes goes negative if( (se0+se1 < best_se0+best_se1) || // Strictly less error? // Or tied MSE, then pick split towards middle bins (se0+se1 == best_se0+best_se1 && Math.abs(b -(nbins>>1)) < Math.abs(best-(nbins>>1))) ) { best_se0 = se0; best_se1 = se1; best = b; } } // If the bin covers a single value, we can also try an equality-based split if( _isInt > 0 && _step == 1.0f && // For any integral (not float) column _maxEx-_min > 2 && idxs==null ) { // Also need more than 2 (boolean) choices to actually try a new split pattern for( int b=1; b<=nbins-1; b++ ) { if( bins[b] < min_rows ) continue; // Ignore too small splits double N = ns0[b] + ns1[b+1]; if( N < min_rows ) continue; // Ignore too small splits double sums2 = sums0[b ]+sums1[b+1]; double ssqs2 = ssqs0[b ]+ssqs1[b+1]; double si = ssqs2 -sums2 *sums2 / N ; // Left+right, excluding 'b' double sx = ssqs [b] -sums[b]*sums[b]/bins[b]; // Just 'b' if( si < 0 ) si = 0; // Roundoff error; sometimes goes negative if( sx < 0 ) sx = 0; // Roundoff error; sometimes goes negative if( si+sx < best_se0+best_se1 ) { // Strictly less error? best_se0 = si; best_se1 = sx; best = b; equal = 1; // Equality check } } } // For categorical (unordered) predictors, we sorted the bins by average // prediction then found the optimal split on sorted bins IcedBitSet bs = null; // In case we need an arbitrary bitset if( idxs != null ) { // We sorted bins; need to build a bitset int min=Integer.MAX_VALUE;// Compute lower bound and span for bitset int max=Integer.MIN_VALUE; for( int i=best; i





© 2015 - 2025 Weber Informatics LLC | Privacy Policy