
hex.tree.drf.DRFModel Maven / Gradle / Ivy
package hex.tree.drf;
import hex.tree.SharedTreeModel;
import water.Key;
import water.util.MathUtils;
import water.util.SBPrintStream;
import java.util.Arrays;
public class DRFModel extends SharedTreeModel {
public static class DRFParameters extends SharedTreeModel.SharedTreeParameters {
public boolean _binomial_double_trees = false;
public int _mtries = -1; //number of columns to use per split. default depeonds on the algorithm and problem (classification/regression)
public DRFParameters() {
super();
// Set DRF-specific defaults (can differ from SharedTreeModel's defaults)
_mtries = -1;
_sample_rate = 0.632f;
_max_depth = 20;
_min_rows = 1;
}
}
public static class DRFOutput extends SharedTreeModel.SharedTreeOutput {
public DRFOutput( DRF b, double mse_train, double mse_valid ) { super(b,mse_train,mse_valid); }
}
public DRFModel(Key selfKey, DRFParameters parms, DRFOutput output ) { super(selfKey,parms,output); }
@Override protected boolean binomialOpt() { return !_parms._binomial_double_trees; }
/** Bulk scoring API for one row. Chunks are all compatible with the model,
* and expect the last Chunks are for the final distribution and prediction.
* Default method is to just load the data into the tmp array, then call
* subclass scoring logic. */
@Override protected double[] score0(double data[], double preds[], double weight, double offset) {
super.score0(data, preds, weight, offset);
int N = _output._ntrees;
if (_output.nclasses() == 1) { // regression - compute avg over all trees
if (N>=1) preds[0] /= N;
} else { // classification
if (_output.nclasses() == 2 && binomialOpt()) {
if (N>=1) {
preds[1] /= N; //average probability
}
preds[2] = 1. - preds[1];
} else {
double sum = MathUtils.sum(preds);
if (sum > 0) MathUtils.div(preds, sum);
}
}
return preds;
}
@Override protected void toJavaUnifyPreds(SBPrintStream body) {
if (_output.nclasses() == 1) { // Regression
body.ip("preds[0] /= " + _output._ntrees + ";").nl();
} else { // Classification
if( _output.nclasses()==2 && binomialOpt()) { // Kept the initial prediction for binomial
body.ip("preds[1] /= " + _output._ntrees + ";").nl();
body.ip("preds[2] = 1.0 - preds[1];").nl();
} else {
body.ip("double sum = 0;").nl();
body.ip("for(int i=1; i0) for(int i=1; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy