All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
ai.h2o.automl.preprocessing.TargetEncoding Maven / Gradle / Ivy
package ai.h2o.automl.preprocessing;
import ai.h2o.automl.AutoML;
import ai.h2o.automl.AutoMLBuildSpec.AutoMLBuildControl;
import ai.h2o.automl.AutoMLBuildSpec.AutoMLInput;
import ai.h2o.automl.events.EventLogEntry.Stage;
import ai.h2o.targetencoding.TargetEncoder;
import ai.h2o.targetencoding.TargetEncoderModel;
import ai.h2o.targetencoding.TargetEncoderModel.DataLeakageHandlingStrategy;
import ai.h2o.targetencoding.TargetEncoderModel.TargetEncoderParameters;
import ai.h2o.targetencoding.TargetEncoderPreprocessor;
import hex.Model;
import hex.Model.Parameters.FoldAssignmentScheme;
import hex.ModelPreprocessor;
import water.DKV;
import water.Key;
import water.fvec.Frame;
import water.fvec.Vec;
import water.rapids.ast.prims.advmath.AstKFold;
import water.util.ArrayUtils;
import java.util.*;
import java.util.function.Predicate;
public class TargetEncoding implements PreprocessingStep {
public static String CONFIG_ENABLED = "target_encoding_enabled";
public static String CONFIG_PREPARE_CV_ONLY = "target_encoding_prepare_cv_only";
static String TE_FOLD_COLUMN_SUFFIX = "_te_fold";
private static final Completer NOOP = () -> {};
private AutoML _aml;
private TargetEncoderPreprocessor _tePreprocessor;
private TargetEncoderModel _teModel;
private final List _disposables = new ArrayList<>();
private TargetEncoderParameters _defaultParams;
private boolean _encodeAllColumns = false; // if true, bypass all restrictions in columns selection.
private int _columnCardinalityThreshold = 25; // the minimal cardinality for a column to be TE encoded.
public TargetEncoding(AutoML aml) {
_aml = aml;
}
@Override
public String getType() {
return PreprocessingStepDefinition.Type.TargetEncoding.name();
}
@Override
public void prepare() {
AutoMLInput amlInput = _aml.getBuildSpec().input_spec;
AutoMLBuildControl amlBuild = _aml.getBuildSpec().build_control;
Frame amlTrain = _aml.getTrainingFrame();
TargetEncoderParameters params = (TargetEncoderParameters) getDefaultParams().clone();
params._train = amlTrain._key;
params._response_column = amlInput.response_column;
params._seed = amlBuild.stopping_criteria.seed();
Set teColumns = selectColumnsToEncode(amlTrain, params);
if (teColumns.isEmpty()) return;
_aml.eventLog().warn(Stage.FeatureCreation,
"Target Encoding integration in AutoML is in an experimental stage, the models obtained with this feature can not yet be downloaded as MOJO for production.");
if (_aml.isCVEnabled()) {
params._data_leakage_handling = DataLeakageHandlingStrategy.KFold;
params._fold_column = amlInput.fold_column;
if (params._fold_column == null) {
//generate fold column
Frame train = new Frame(params.train());
Vec foldColumn = createFoldColumn(
params.train(),
FoldAssignmentScheme.Modulo,
amlBuild.nfolds,
params._response_column,
params._seed
);
DKV.put(foldColumn);
params._fold_column = params._response_column+TE_FOLD_COLUMN_SUFFIX;
train.add(params._fold_column, foldColumn);
register(train, params._train.toString(), true);
params._train = train._key;
_disposables.add(() -> {
foldColumn.remove();
DKV.remove(train._key);
});
}
}
String[] keep = params.getNonPredictors();
params._ignored_columns = Arrays.stream(amlTrain.names())
.filter(col -> !teColumns.contains(col) && !ArrayUtils.contains(keep, col))
.toArray(String[]::new);
TargetEncoder te = new TargetEncoder(params, _aml.makeKey(getType(), null, false));
_teModel = te.trainModel().get();
_tePreprocessor = new TargetEncoderPreprocessor(_teModel);
}
@Override
public Completer apply(Model.Parameters params, PreprocessingConfig config) {
if (_tePreprocessor == null || !config.get(CONFIG_ENABLED, true)) return NOOP;
if (!config.get(CONFIG_PREPARE_CV_ONLY, false))
params._preprocessors = (Key[])ArrayUtils.append(params._preprocessors, _tePreprocessor._key);
Frame train = new Frame(params.train());
String foldColumn = _teModel._parms._fold_column;
boolean addFoldColumn = foldColumn != null && train.find(foldColumn) < 0;
if (addFoldColumn) {
train.add(foldColumn, _teModel._parms._train.get().vec(foldColumn));
register(train, params._train.toString(), true);
params._train = train._key;
params._fold_column = foldColumn;
params._nfolds = 0; // to avoid confusion or errors
params._fold_assignment = FoldAssignmentScheme.AUTO; // to avoid confusion or errors
}
return () -> {
//revert train changes
if (addFoldColumn) {
DKV.remove(train._key);
}
};
}
@Override
public void dispose() {
for (Completer disposable : _disposables) disposable.run();
}
@Override
public void remove() {
if (_tePreprocessor != null) {
_tePreprocessor.remove(true);
_tePreprocessor = null;
_teModel = null;
}
}
public void setDefaultParams(TargetEncoderParameters defaultParams) {
_defaultParams = defaultParams;
}
public void setEncodeAllColumns(boolean encodeAllColumns) {
_encodeAllColumns = encodeAllColumns;
}
public void setColumnCardinalityThreshold(int threshold) {
_columnCardinalityThreshold = threshold;
}
private TargetEncoderParameters getDefaultParams() {
if (_defaultParams != null) return _defaultParams;
_defaultParams = new TargetEncoderParameters();
_defaultParams._keep_original_categorical_columns = false;
_defaultParams._blending = true;
_defaultParams._inflection_point = 5;
_defaultParams._smoothing = 10;
_defaultParams._noise = 0;
return _defaultParams;
}
private Set selectColumnsToEncode(Frame fr, TargetEncoderParameters params) {
final Set encode = new HashSet<>();
if (_encodeAllColumns) {
encode.addAll(Arrays.asList(fr.names()));
} else {
Predicate cardinalityLargeEnough = v -> v.cardinality() >= _columnCardinalityThreshold;
Predicate cardinalityNotTooLarge = params._blending
? v -> (double) fr.numRows() / v.cardinality() > params._inflection_point
: v -> true;
for (int i = 0; i < fr.names().length; i++) {
Vec v = fr.vec(i);
if (cardinalityLargeEnough.test(v) && cardinalityNotTooLarge.test(v))
encode.add(fr.name(i));
}
}
AutoMLInput amlInput = _aml.getBuildSpec().input_spec;
List nonPredictors = Arrays.asList(
amlInput.weights_column,
amlInput.fold_column,
amlInput.response_column
);
encode.removeAll(nonPredictors);
return encode;
}
TargetEncoderPreprocessor getTEPreprocessor() {
return _tePreprocessor;
}
TargetEncoderModel getTEModel() {
return _teModel;
}
private static void register(Frame fr, String keyPrefix, boolean force) {
Key key = fr._key;
if (key == null || force)
fr._key = keyPrefix == null ? Key.make() : Key.make(keyPrefix+"_"+Key.rand());
if (force) DKV.remove(key);
DKV.put(fr);
}
public static Vec createFoldColumn(Frame fr,
FoldAssignmentScheme fold_assignment,
int nfolds,
String responseColumn,
long seed) {
Vec foldColumn;
switch (fold_assignment) {
default:
case AUTO:
case Random:
foldColumn = AstKFold.kfoldColumn(fr.anyVec().makeZero(), nfolds, seed);
break;
case Modulo:
foldColumn = AstKFold.moduloKfoldColumn(fr.anyVec().makeZero(), nfolds);
break;
case Stratified:
foldColumn = AstKFold.stratifiedKFoldColumn(fr.vec(responseColumn), nfolds, seed);
break;
}
return foldColumn;
}
}