ai.h2o.automl.modeling.CompletionStepsProvider Maven / Gradle / Ivy
The newest version!
package ai.h2o.automl.modeling;
import ai.h2o.automl.*;
import ai.h2o.automl.ModelingStep.DynamicStep;
import hex.Model;
import hex.grid.Grid;
import hex.grid.HyperSpaceSearchCriteria.RandomDiscreteValueSearchCriteria;
import hex.leaderboard.Leaderboard;
import water.Job;
import water.Key;
import java.util.*;
import java.util.stream.Collectors;
public class CompletionStepsProvider implements ModelingStepsProvider {
public static class CompletionSteps extends ModelingSteps {
static final String NAME = "completion";
static class ResumingGridStep extends ModelingStep.GridStep {
private transient GridStep _step;
public ResumingGridStep(GridStep step, int priorityGroup, int weight, AutoML aml) {
super(NAME, step.getAlgo(), step.getProvider()+"_"+step.getId(), priorityGroup, weight, aml);
_work = makeWork();
_step = step;
}
@Override
public boolean canRun() {
return _step != null && _weight > 0;
}
@Override
public Model.Parameters prepareModelParameters() {
return _step.prepareModelParameters();
}
@Override
public Map prepareSearchParameters() {
return _step.prepareSearchParameters();
}
@Override
protected void setSearchCriteria(RandomDiscreteValueSearchCriteria searchCriteria, Model.Parameters baseParms) {
super.setSearchCriteria(searchCriteria, baseParms);
searchCriteria.set_stopping_rounds(0);
}
@Override
@SuppressWarnings("unchecked")
protected Job startJob() {
Key[] resumedGrid = aml().session().getResumableKeys(_step.getProvider(), _step.getId());
if (resumedGrid.length == 0) return null;
return hyperparameterSearch(resumedGrid[0], prepareModelParameters(), prepareSearchParameters());
}
}
static class ResumeBestNGridsStep extends DynamicStep {
private final int _nGrids;
public ResumeBestNGridsStep(String id, int nGrids, AutoML autoML) {
super(NAME, id, autoML);
_nGrids = nGrids;
}
private List sortModelingStepByPerf() {
Map> scoresBySource = new HashMap<>();
Model[] models = getTrainedModels();
double[] metrics = aml().leaderboard().getSortMetricValues();
if (metrics == null) return Collections.emptyList();
for (int i = 0; i < models.length; i++) {
ModelingStep source = aml().session().getModelingStep(models[i]._key);
if (!scoresBySource.containsKey(source)) {
scoresBySource.put(source, new ArrayList<>());
}
scoresBySource.get(source).add(metrics[i]);
}
Comparator> metricsComparator = Map.Entry.comparingByValue();
if (!Leaderboard.isLossFunction(aml().leaderboard().getSortMetric())) metricsComparator = metricsComparator.reversed();
return scoresBySource.entrySet().stream()
.collect(Collectors.toMap(
Map.Entry::getKey,
e -> e.getValue().stream().mapToDouble(Double::doubleValue).average().orElse(-1)
))
.entrySet().stream().sorted(metricsComparator)
.filter(e -> e.getValue() >= 0)
.map(Map.Entry::getKey)
.collect(Collectors.toList());
}
@Override
protected Collection prepareModelingSteps() {
List bestStep = sortModelingStepByPerf();
return bestStep.stream()
.filter(ModelingStep::isResumable)
.filter(GridStep.class::isInstance)
// .map(s -> aml().getModelingStep(s.getProvider(), s.getId()+"_resume"))
// .filter(Objects::nonNull)
.limit(_nGrids)
.map(s -> new ResumingGridStep((GridStep)s, _priorityGroup, _weight/_nGrids, aml()))
.collect(Collectors.toList());
}
}
private final ModelingStep[] optionals = new ModelingStep[] {
new ResumeBestNGridsStep("resume_best_grids", 2, aml())
};
public CompletionSteps(AutoML autoML) {
super(autoML);
}
@Override
public String getProvider() {
return NAME;
}
@Override
protected ModelingStep[] getOptionals() {
return optionals;
}
}
@Override
public String getName() {
return CompletionSteps.NAME;
}
@Override
public CompletionSteps newInstance(AutoML aml) {
return new CompletionSteps(aml);
}
}