All Downloads are FREE. Search and download functionalities are using the official Maven repository.

water.bindings.pojos.ModelMetricsHGLMV3 Maven / Gradle / Ivy

There is a newer version: 3.46.0.5
Show newest version
/*
 * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py
 * Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
 */
package water.bindings.pojos;

import com.google.gson.Gson;
import com.google.gson.annotations.*;


public class ModelMetricsHGLMV3 extends ModelMetricsBaseV3 {

    /**
     * standard error of fixed predictors/effects
     */
    public double[] sefe;

    /**
     * standard error of random effects
     */
    public double[] sere;

    /**
     * dispersion parameter of the mean model (residual variance for LMM)
     */
    public double varfix;

    /**
     * dispersion parameter of the random effects (variance of random effects for GLMM
     */
    public double[] varranef;

    /**
     * fixed coefficient)
     */
    public double[] fixef;

    /**
     * random coefficients
     */
    public double[] ranef;

    /**
     * true if model has converged
     */
    public boolean converge;

    /**
     * number of random columns
     */
    public int[] randc;

    /**
     * deviance degrees of freedom for mean part of the model
     */
    public double dfrefe;

    /**
     * estimates, standard errors of the linear predictor in the dispersion model
     */
    public double[] summvc1;

    /**
     * estimates, standard errors of the linear predictor for dispersion parameter of random effects
     */
    public double[][] summvc2;

    /**
     * log h-likelihood
     */
    public double hlik;

    /**
     * adjusted profile log-likelihood profiled over random effects
     */
    public double pvh;

    /**
     * adjusted profile log-likelihood profiled over fixed and random effects
     */
    public double pbvh;

    /**
     * conditional AIC
     */
    public double caic;

    /**
     * index of the most influential observation
     */
    public long bad;

    /**
     * sum(etai-eta0)^2 where etai is current eta and eta0 is the previous one
     */
    public double sumetadiffsquare;

    /**
     * sum(etai-eta0)^2/sum(etai)^2
     */
    public double convergence;


    /*------------------------------------------------------------------------------------------------------------------
    //                                                  INHERITED
    //------------------------------------------------------------------------------------------------------------------

    // The model used for this scoring run.
    public ModelKeyV3 model;

    // The checksum for the model used for this scoring run.
    public long modelChecksum;

    // The frame used for this scoring run.
    public FrameKeyV3 frame;

    // The checksum for the frame used for this scoring run.
    public long frameChecksum;

    // Optional description for this scoring run (to note out-of-bag, sampled data, etc.)
    public String description;

    // The category (e.g., Clustering) for the model used for this scoring run.
    public ModelCategory modelCategory;

    // The time in mS since the epoch for the start of this scoring run.
    public long scoringTime;

    // Predictions Frame.
    public FrameV3 predictions;

    // The Mean Squared Error of the prediction for this scoring run.
    public double mse;

    // The Root Mean Squared Error of the prediction for this scoring run.
    public double rmse;

    // Number of observations.
    public long nobs;

    // Name of custom metric
    public String customMetricName;

    // Value of custom metric
    public double customMetricValue;

    */

    /**
     * Public constructor
     */
    public ModelMetricsHGLMV3() {
        varfix = 0.0;
        converge = false;
        dfrefe = 0.0;
        hlik = 0.0;
        pvh = 0.0;
        pbvh = 0.0;
        caic = 0.0;
        bad = 0L;
        sumetadiffsquare = 0.0;
        convergence = 0.0;
        modelChecksum = 0L;
        frameChecksum = 0L;
        description = "";
        scoringTime = 0L;
        mse = 0.0;
        rmse = 0.0;
        nobs = 0L;
        customMetricName = "";
        customMetricValue = 0.0;
    }

    /**
     * Return the contents of this object as a JSON String.
     */
    @Override
    public String toString() {
        return new Gson().toJson(this);
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy