water.bindings.pojos.ModelMetricsOrdinalGLMGenericV3 Maven / Gradle / Ivy
/*
* This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py
* Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details)
*/
package water.bindings.pojos;
import com.google.gson.Gson;
import com.google.gson.annotations.*;
public class ModelMetricsOrdinalGLMGenericV3 extends ModelMetricsOrdinalGenericV3 {
/**
* residual deviance
*/
@SerializedName("residual_deviance")
public double residualDeviance;
/**
* null deviance
*/
@SerializedName("null_deviance")
public double nullDeviance;
/**
* AIC
*/
@SerializedName("AIC")
public double aic;
/**
* log likelihood
*/
public double loglikelihood;
/**
* null DOF
*/
@SerializedName("null_degrees_of_freedom")
public long nullDegreesOfFreedom;
/**
* residual DOF
*/
@SerializedName("residual_degrees_of_freedom")
public long residualDegreesOfFreedom;
/**
* coefficients_table
*/
@SerializedName("coefficients_table")
public TwoDimTableV3 coefficientsTable;
/*------------------------------------------------------------------------------------------------------------------
// INHERITED
//------------------------------------------------------------------------------------------------------------------
// The R^2 for this scoring run.
public double r2;
// The hit ratio table for this scoring run.
public TwoDimTableV3 hitRatioTable;
// The ConfusionMatrix object for this scoring run.
public ConfusionMatrixV3 cm;
// The logarithmic loss for this scoring run.
public double logloss;
// The mean misclassification error per class.
public double meanPerClassError;
// The model used for this scoring run.
public ModelKeyV3 model;
// The checksum for the model used for this scoring run.
public long modelChecksum;
// The frame used for this scoring run.
public FrameKeyV3 frame;
// The checksum for the frame used for this scoring run.
public long frameChecksum;
// Optional description for this scoring run (to note out-of-bag, sampled data, etc.)
public String description;
// The category (e.g., Clustering) for the model used for this scoring run.
public ModelCategory modelCategory;
// The time in mS since the epoch for the start of this scoring run.
public long scoringTime;
// Predictions Frame.
public FrameV3 predictions;
// The Mean Squared Error of the prediction for this scoring run.
public double mse;
// The Root Mean Squared Error of the prediction for this scoring run.
public double rmse;
// Number of observations.
public long nobs;
// Name of custom metric
public String customMetricName;
// Value of custom metric
public double customMetricValue;
*/
/**
* Public constructor
*/
public ModelMetricsOrdinalGLMGenericV3() {
residualDeviance = 0.0;
nullDeviance = 0.0;
aic = 0.0;
loglikelihood = 0.0;
nullDegreesOfFreedom = 0L;
residualDegreesOfFreedom = 0L;
r2 = 0.0;
logloss = 0.0;
meanPerClassError = 0.0;
modelChecksum = 0L;
frameChecksum = 0L;
description = "";
scoringTime = 0L;
mse = 0.0;
rmse = 0.0;
nobs = 0L;
customMetricName = "";
customMetricValue = 0.0;
}
/**
* Return the contents of this object as a JSON String.
*/
@Override
public String toString() {
return new Gson().toJson(this);
}
}