
water.api.ModelMetricsBinomialV3 Maven / Gradle / Ivy
package water.api;
import hex.AUC2;
import hex.ModelMetricsBinomial;
import water.util.TwoDimTable;
import java.util.Arrays;
public class ModelMetricsBinomialV3> extends ModelMetricsBase {
// @API(help="The standard deviation of the training response.", direction=API.Direction.OUTPUT)
// public double sigma; // Belongs in a mythical ModelMetricsSupervisedV3
@API(help="The R^2 for this scoring run.", direction=API.Direction.OUTPUT)
public double r2;
@API(help="The logarithmic loss for this scoring run.", direction=API.Direction.OUTPUT)
public double logloss;
@API(help="The AUC for this scoring run.", direction=API.Direction.OUTPUT)
public double AUC;
@API(help="The Gini score for this scoring run.", direction=API.Direction.OUTPUT)
public double Gini;
@API(help="The class labels of the response.", direction=API.Direction.OUTPUT)
public String[] domain;
// @API(help = "The ConfusionMatrix at the threshold for maximum F1.", direction = API.Direction.OUTPUT)
// public ConfusionMatrixBase cm;
@API(help = "The Metrics for various thresholds.", direction = API.Direction.OUTPUT, level = API.Level.expert)
public TwoDimTableBase thresholds_and_metric_scores;
@API(help = "The Metrics for various criteria.", direction = API.Direction.OUTPUT, level = API.Level.secondary)
public TwoDimTableBase max_criteria_and_metric_scores;
@API(help = "Gains and Lift table.", direction = API.Direction.OUTPUT, level = API.Level.secondary)
public TwoDimTableBase gains_lift_table;
@Override
public S fillFromImpl(ModelMetricsBinomial modelMetrics) {
super.fillFromImpl(modelMetrics);
// sigma = modelMetrics._sigma;
r2 = modelMetrics.r2();
logloss = modelMetrics._logloss;
AUC2 auc = modelMetrics._auc;
if (null != auc) {
AUC = auc._auc;
Gini = auc._gini;
// Fill TwoDimTable
String[] thresholds = new String[auc._nBins];
for( int i=0; i i) colHeadersMax[i] = "max " + crits[i].toString();
colHeaders[i+1] = crits[i].toString();
types [i+1] = crits[i]._isInt ? "long" : "double";
formats [i+1] = crits[i]._isInt ? "%d" : "%f" ;
}
colHeaders[i+1] = "idx"; types[i+1] = "int"; formats[i+1] = "%d";
TwoDimTable thresholdsByMetrics = new TwoDimTable("Metrics for Thresholds", "Binomial metrics as a function of classification thresholds", new String[auc._nBins], colHeaders, types, formats, null );
for( i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy