
water.fvec.CategoricalWrappedVec Maven / Gradle / Ivy
package water.fvec;
import water.AutoBuffer;
import water.Key;
import water.DKV;
import water.util.ArrayUtils;
import java.util.Arrays;
import java.util.HashMap;
/** A vector transforming values of given vector according to given domain
* mapping - currently only used to transform categorical columns but in theory would
* work for any dense-packed Int column. Expected usage is to map from a new
* dataset to the domain-mapping expected by a model (which will match the
* dataset it was trained on).
*
* The Vector's domain is the union of the Test and Train domains.
*
*
The mapping is defined by int[] array, size is input Test.domain.length.
* Contents refer to values in the Train.domain. Extra values in the Test
* domain are sorted after the Train.domain - so mapped values have to be
* range-checked (note that returning some flag for NA, say -1, would also
* need to be checked for).
*/
public class CategoricalWrappedVec extends WrappedVec {
/** List of values from underlying vector which this vector map to a new
* value in the union domain. */
int[] _map;
int _p=0;
/** Main constructor: convert from one categorical to another */
public CategoricalWrappedVec(Key key, int rowLayout, String[] toDomain, Key masterVecKey) {
super(key, rowLayout, masterVecKey);
computeMap(masterVec().domain(),toDomain,masterVec().isBad());
DKV.put(this);
}
/** Constructor just to generate the map and domain; used in tests or when
* mixing categorical columns */
private CategoricalWrappedVec(Key key) { super(key, ESPC.rowLayout(key, new long[]{0}), null, null); }
public static int[] computeMap(String[] from, String[] to) {
Key key = Vec.newKey();
CategoricalWrappedVec tmp = new CategoricalWrappedVec(key);
tmp.computeMap(from, to, false);
return tmp._map;
}
@Override public Chunk chunkForChunkIdx(int cidx) {
return new CategoricalWrappedChunk(masterVec().chunkForChunkIdx(cidx), this);
}
/** Compute a mapping from the 'from' domain to the 'to' domain. Strings in
* the 'from' domain not in the 'to' domain are mapped past the end of the
* 'to' values. Strings in the 'to' domain not in the 'from' domain
* simply do not appear in the mapping. The returned map is always the same
* length as the 'from' domain. Its contents have values from both
* domains; the resulting domain is as big as the largest value in the map,
* and only has strings from the 'from' domain (which probably overlap
* somewhat with the 'to' domain).
*
*
Example: from={"Blue","Red","Green"}, to={"Green","Yellow","Blue"}.
* "Yellow" does not appear in the 'from' domain; "Red" does not appear in the 'to' domain.
* Returned map is {2,3,0}.
* Map length matches the 'from' domain length.
* Largest value is 3, so the domain is size 4.
* Domain is: {"Green","Yellow","Blue","Red"}
* Extra values in the 'from' domain appear, in-order in the 'from' domain, at the end.
* @return mapping
*/
void computeMap( String[] from, String[] to, boolean fromIsBad ) {
// Identity? Build the cheapo non-map
if( from==to || Arrays.equals(from,to) ) {
_map = ArrayUtils.seq(0,to.length);
setDomain(to);
return;
}
// The source Vec does not have a domain, hence is an integer column. The
// to[] mapping has the set of unique numbers, we need to map from those
// numbers to the index to the numbers.
if( from==null ) {
setDomain(to);
if( fromIsBad ) { _map = new int[0]; return; }
int min = Integer.valueOf(to[0]);
int max = Integer.valueOf(to[to.length-1]);
Vec mvec = masterVec();
if( !(mvec.isInt() && mvec.min() >= min && mvec.max() <= max) )
throw new NumberFormatException(); // Unable to figure out a valid mapping
// FIXME this is a bit of a hack to allow adapTo calls to play nice with negative ints in the domain...
if( Integer.valueOf(to[0]) < 0 ) {
_p=Math.max(0,max);
_map = new int[(_p /*positive array of values*/) + (-1*min /*negative array of values*/) + 1 /*one more to store "max" value*/];
for(int i=0;i h = new HashMap<>();
for( int i=0; i ss.length) {
ss = Arrays.copyOf(ss, 2*ss.length);
}
ss[extra-1] = from[j];
actualLen = extra;
}
}
setDomain(Arrays.copyOf(ss, actualLen));
}
@Override
public Vec doCopy() {
return new CategoricalWrappedVec(group().addVec(),_rowLayout, domain(), _masterVecKey);
}
public static class CategoricalWrappedChunk extends Chunk {
public final transient Chunk _c; // Test-set map
final transient int[] _map;
final transient int _p;
CategoricalWrappedChunk(Chunk c, CategoricalWrappedVec vec) {
_c = c; set_len(_c._len);
_start = _c._start; _vec = vec; _cidx = _c._cidx;
_map = vec._map; _p = vec._p;
}
// Returns the mapped value. {@code _map} covers all the values in the
// master Chunk, so no AIOOBE. Missing values in the master Chunk return
// the usual NaN.
@Override protected double atd_impl(int idx) { return _c.isNA_impl(idx) ? Double.NaN : at8_impl(idx); }
// Returns the mapped value. {@code _map} covers all the values in the
// master Chunk, so no AIOOBE. Missing values in the master Chunk throw
// the normal missing-value exception when loading from the master.
@Override protected long at8_impl(int idx) {
int at8 = (int)_c.at8_impl(idx);
if( at8 >= 0 ) return _map[at8];
else return _map[-1*at8+_p];
}
// Returns true if the masterVec is missing, false otherwise
@Override protected boolean isNA_impl(int idx) { return _c.isNA_impl(idx); }
@Override boolean set_impl(int idx, long l) { return false; }
@Override boolean set_impl(int idx, double d) { return false; }
@Override boolean set_impl(int idx, float f) { return false; }
@Override boolean setNA_impl(int idx) { return false; }
@Override public NewChunk inflate_impl(NewChunk nc) {
nc.set_sparseLen(nc.set_len(0));
for( int i=0; i< _len; i++ )
if(isNA(i))nc.addNA();
else nc.addNum(at8(i),0);
return nc;
}
public static AutoBuffer write_impl(CategoricalWrappedVec v,AutoBuffer bb) { throw water.H2O.fail(); }
@Override protected final void initFromBytes () { throw water.H2O.fail(); }
@Override public boolean hasNA() { return false; }
}
}