hex.genmodel.algos.deepwater.DeepwaterMojoReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of h2o-genmodel-ext-deepwater Show documentation
Show all versions of h2o-genmodel-ext-deepwater Show documentation
H2O GenModel Deepwater Extension
package hex.genmodel.algos.deepwater;
import deepwater.backends.BackendParams;
import deepwater.backends.RuntimeOptions;
import deepwater.datasets.ImageDataSet;
import hex.genmodel.ModelMojoReader;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.UUID;
/**
*/
public class DeepwaterMojoReader extends ModelMojoReader {
@Override
public String getModelName() {
return "Deep Water";
}
@Override
protected void readModelData() throws IOException {
try {
_model._network = readblob("model_network");
_model._parameters = readblob("model_params");
} catch (IOException e) {
throw new RuntimeException(e);
}
_model._backend = DeepwaterMojoModel.createDeepWaterBackend((String) readkv("backend")); // new ImageTrain(_width, _height, _channels, _deviceID, (int)parameters.getOrMakeRealSeed(), _gpu);
if (_model._backend == null) {
throw new IllegalArgumentException("Couldn't instantiate the Deep Water backend.");
}
_model._problem_type = readkv("problem_type");
_model._mini_batch_size = readkv("mini_batch_size");
_model._height = readkv("height");
_model._width = readkv("width");
_model._channels = readkv("channels");
_model._nums = readkv("nums");
_model._cats = readkv("cats");
_model._catOffsets = readkv("cat_offsets");
_model._normMul = readkv("norm_mul");
_model._normSub = readkv("norm_sub");
_model._normRespMul = readkv("norm_resp_mul");
_model._normRespSub = readkv("norm_resp_sub");
_model._useAllFactorLevels = readkv("use_all_factor_levels");
_model._imageDataSet = new ImageDataSet(_model._width, _model._height, _model._channels, _model._nclasses);
_model._opts = new RuntimeOptions();
_model._opts.setSeed(0); // ignored - not needed during scoring
_model._opts.setUseGPU((boolean)readkv("gpu"));
_model._opts.setDeviceID((int[])readkv("device_id"));
_model._backendParams = new BackendParams();
_model._backendParams.set("mini_batch_size", 1);
File file = new File(System.getProperty("java.io.tmpdir"), UUID.randomUUID().toString() + ".json");
try {
FileOutputStream os = new FileOutputStream(file.toString());
os.write(_model._network);
os.close();
_model._model = _model._backend.buildNet(_model._imageDataSet, _model._opts, _model._backendParams, _model._nclasses, file.toString());
} catch (IOException e) {
e.printStackTrace();
} finally {
if (file!=null)
_model._backend.deleteSavedModel(file.toString());
}
// 1) read the raw bytes of the mean image file from the MOJO
byte[] meanBlob;
try {
meanBlob = readblob("mean_image_file"); //throws exception if not found
// 2) write the mean image file
File meanFile = new File(System.getProperty("java.io.tmpdir"), UUID.randomUUID().toString() + ".mean");
try {
FileOutputStream os = new FileOutputStream(meanFile.toString());
os.write(meanBlob);
os.close();
// 3) tell the backend to use that mean image file (just in case it needs it)
_model._imageDataSet.setMeanData(_model._backend.loadMeanImage(_model._model, meanFile.toString()));
// 4) keep a float[] version of the mean array to be used during image processing
_model._meanImageData = _model._imageDataSet.getMeanData();
} catch (IOException e) {
e.printStackTrace();
} finally {
if (meanFile!=null)
meanFile.delete();
}
} catch (IOException e) {
// e.printStackTrace();
}
file = new File(System.getProperty("java.io.tmpdir"), UUID.randomUUID().toString());
try {
_model._backend.writeBytes(file, _model._parameters);
_model._backend.loadParam(_model._model, file.toString());
} catch (IOException e) {
e.printStackTrace();
} finally {
if (file!=null)
_model._backend.deleteSavedParam(file.toString());
}
}
@Override
protected DeepwaterMojoModel makeModel(String[] columns, String[][] domains, String responseColumn) {
return new DeepwaterMojoModel(columns, domains, responseColumn);
}
@Override public String mojoVersion() {
return "1.00";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy