water.parser.orc.OrcParser Maven / Gradle / Ivy
package water.parser.orc;
import org.apache.hadoop.hive.common.type.HiveDecimal;
import org.apache.hadoop.hive.ql.exec.vector.*;
import org.apache.hadoop.hive.ql.io.orc.Reader;
import org.apache.hadoop.hive.ql.io.orc.RecordReader;
import org.apache.hadoop.hive.ql.io.orc.StripeInformation;
import org.apache.hadoop.hive.serde2.io.HiveDecimalWritable;
import org.apache.hadoop.hive.serde2.objectinspector.*;
import org.joda.time.DateTime;
import org.joda.time.MutableDateTime;
import water.H2O;
import water.Job;
import water.Key;
import water.fvec.Vec;
import water.parser.*;
import water.util.ArrayUtils;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import static water.parser.orc.OrcUtil.isSupportedSchema;
import static water.parser.orc.OrcUtil.schemaToColumnType;
// Orc support
/**
* ORC parser for H2O distributed parsing subsystem.
*
* Basically, here is the plan:
* To parse an Orc file, we need to do the following in order to get the following useful
* information:
* 1. Get a Reader rdr.
* 2. From the reader rdr, we can get the following pieces of information:
* a. number of columns, column types and column names. We only support parsing of primitive types;
* b. Lists of StripeInformation that describes how many stripes of data that we will need to read;
* c. For each stripe, get information like rows per stripe, data size in bytes
* 3. The plan is to read the file in parallel in whole numbers of stripes.
* 4. Inside each stripe, we will read data out in batches of VectorizedRowBatch (1024 rows or less).
*
*/
public class OrcParser extends Parser {
/** Orc Info */
private final Reader orcFileReader; // can generate all the other fields from this reader
public static final int DAY_TO_MS = 24*3600*1000;
public static final int ADD_OFFSET = 8*3600*1000;
public static final int HOUR_OFFSET = 3600000; // in ms to offset for leap seconds, years
private MutableDateTime epoch = new MutableDateTime(); // used to help us out the leap seconds, years
private ArrayList storeWarnings = new ArrayList(); // store a list of warnings
OrcParser(ParseSetup setup, Key jobKey) {
super(setup, jobKey);
epoch.setDate(0); // used to figure out leap seconds, years
this.orcFileReader = ((OrcParser.OrcParseSetup) setup).orcFileReader;
}
private transient int _cidx;
private transient HashMap> _toStringMaps = new HashMap<>();
/**
* This method calculates the number of stripes that will be read for each chunk. Since
* only single threading is supported in reading each stripe, we will never split one stripe
* over different chunks.
*
* @param chunkId: chunk index, calculated as file size/chunk size. The file size is calculated
* with data plus overhead in terms of headers and other info, number of chunks
* calculated will be higher than the actual chunks needed. If the chunk number
* is too high, the method will return without writing to
* dout.
* @param din: ParseReader, not used for parsing orc files
* @param dout: ParseWriter, used to add data to H2O frame.
* @return: Parsewriter dout.
*/
@Override
protected final ParseWriter parseChunk(int chunkId, ParseReader din, ParseWriter dout) {
_cidx = chunkId;
// only do something if within file size and the orc file is not empty
List stripesInfo = ((OrcParseSetup) this._setup).getStripes();
if(stripesInfo.size() == 0) {
dout.addError(new ParseWriter.ParseErr("Orc Parser: Empty file.", chunkId, 0L, -2L));
return dout; // empty file
}
OrcParseSetup setup = (OrcParseSetup) this._setup;
StripeInformation thisStripe = stripesInfo.get(chunkId); // get one stripe
// write one stripe of data to H2O frame
String [] orcTypes = setup.getColumnTypesString();
boolean[] toInclude = setup.getToInclude();
try {
RecordReader perStripe = orcFileReader.rows(thisStripe.getOffset(), thisStripe.getDataLength(),
setup.getToInclude(), null, setup.getColumnNames());
VectorizedRowBatch batch = null;
long rows = 0;
long rowCount = thisStripe.getNumberOfRows();
while (rows != rowCount) {
batch = perStripe.nextBatch(batch); // read orc file stripes in vectorizedRowBatch
long currentBatchRow = batch.count();
int nrows = (int)currentBatchRow;
if(currentBatchRow != nrows)
throw new IllegalArgumentException("got batch with too many records, does not fit in int");
ColumnVector[] dataVectors = batch.cols;
int colIndex = 0;
for (int col = 0; col < batch.numCols; ++col) { // read one column at a time;
if (toInclude[col + 1]) { // only write a column if we actually want it
write1column(dataVectors[col], orcTypes[colIndex], colIndex, nrows, dout);
colIndex++;
}
}
rows += currentBatchRow; // record number of rows of data actually read
}
perStripe.close();
} catch(IOException ioe) {
throw new RuntimeException(ioe);
}
return dout;
}
/**
* This method writes one column of H2O data frame at a time.
*
* @param oneColumn
* @param columnType
* @param cIdx
* @param rowNumber
* @param dout
*/
private void write1column(ColumnVector oneColumn, String columnType, int cIdx, int rowNumber,ParseWriter dout) {
if(oneColumn.isRepeating && !oneColumn.noNulls) { // ALL NAs
for(int i = 0; i < rowNumber; ++i)
dout.addInvalidCol(cIdx);
} else switch (columnType.toLowerCase()) {
case "bigint":
case "boolean":
case "int":
case "smallint":
case "tinyint":
writeLongcolumn((LongColumnVector)oneColumn, cIdx, rowNumber, dout);
break;
case "float":
case "double":
writeDoublecolumn((DoubleColumnVector)oneColumn, cIdx, rowNumber, dout);
break;
case "numeric":
case "real":
if (oneColumn instanceof LongColumnVector)
writeLongcolumn((LongColumnVector)oneColumn, cIdx, rowNumber, dout);
else
writeDoublecolumn((DoubleColumnVector)oneColumn, cIdx, rowNumber, dout);
break;
case "string":
case "varchar":
case "char":
// case "binary": //FIXME: only reading it as string right now.
writeStringcolumn((BytesColumnVector)oneColumn, cIdx, rowNumber, dout);
break;
case "date":
case "timestamp":
writeTimecolumn((LongColumnVector)oneColumn, columnType, cIdx, rowNumber, dout);
break;
case "decimal":
writeDecimalcolumn((DecimalColumnVector)oneColumn, cIdx, rowNumber, dout);
break;
default:
throw new IllegalArgumentException("Unsupported Orc schema type: " + columnType);
}
}
/**
* This method is written to take care of the leap seconds, leap year effects. Our original
* plan of converting number of days from epoch does not quite work out right due to all these
* leap seconds, years accumulated over the century. However, I do notice that when we are
* not correcting for the leap seconds/years, if we build a dateTime object, the hour does not
* work out to be 00. Instead it is off. In this case, we just calculate the offset and take
* if off our straight forward timestamp calculation.
*
* @param daysSinceEpoch: number of days since epoch (1970 1/1)
* @return long: correct timestamp corresponding to daysSinceEpoch
*/
private long correctTimeStamp(long daysSinceEpoch) {
long timestamp = (daysSinceEpoch*DAY_TO_MS+ADD_OFFSET);
DateTime date = new DateTime(timestamp);
int hour = date.hourOfDay().get();
if (hour == 0)
return timestamp;
else
return (timestamp-hour*HOUR_OFFSET);
}
/**
* This method writes one column of H2O frame for column type timestamp. This is just a long that
* records the number of seconds since Jan 1, 2015.
*
* @param col
* @param cIdx
* @param rowNumber
* @param dout
*/
private void writeTimecolumn(LongColumnVector col, String columnType,int cIdx,
int rowNumber, ParseWriter dout) {
boolean timestamp = columnType.equals("timestamp");
long [] oneColumn = col.vector;
if(col.isRepeating) {
long val = timestamp ? oneColumn[0] / 1000000 : correctTimeStamp(oneColumn[0]);
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++)
dout.addNumCol(cIdx, val, 0);
} else if(col.noNulls) {
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++)
dout.addNumCol(cIdx, timestamp ? oneColumn[rowIndex] / 1000000 : correctTimeStamp(oneColumn[rowIndex]), 0);
} else {
boolean[] isNull = col.isNull;
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
if (isNull[rowIndex])
dout.addInvalidCol(cIdx);
else
dout.addNumCol(cIdx, timestamp ? oneColumn[rowIndex] / 1000000 : correctTimeStamp(oneColumn[rowIndex]), 0);
}
}
}
/**
* This method writes a column to H2O frame for column type Decimal. It is just written as some
* integer without using the scale field. Need to make sure this is what the customer wants.
*
* @param col
* @param cIdx
* @param rowNumber
* @param dout
*/
private void writeDecimalcolumn(DecimalColumnVector col, int cIdx,
int rowNumber, ParseWriter dout) {
HiveDecimalWritable[] oneColumn = col.vector;
if(col.isRepeating) {
HiveDecimal hd = oneColumn[0].getHiveDecimal();
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++)
dout.addNumCol(cIdx, hd.unscaledValue().longValue(),-hd.scale());
} else if(col.noNulls) {
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
HiveDecimal hd = oneColumn[rowIndex].getHiveDecimal();
dout.addNumCol(cIdx, hd.unscaledValue().longValue(),-hd.scale());
}
} else {
boolean [] isNull = col.isNull;
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
if (isNull[rowIndex])
dout.addInvalidCol(cIdx);
else {
HiveDecimal hd = oneColumn[rowIndex].getHiveDecimal();
dout.addNumCol(cIdx, hd.unscaledValue().longValue(), -hd.scale());
}
}
}
}
/**
* This method writes a column of H2O frame for Orc File column types of string, varchar, char and
* binary at some point.
*
* @param col
* @param cIdx
* @param rowNumber
* @param dout
*/
private void writeStringcolumn(BytesColumnVector col, int cIdx, int rowNumber, ParseWriter dout) {
BufferedString bs = new BufferedString();
if(col.isRepeating) {
dout.addStrCol(cIdx, bs.set(col.vector[0], col.start[0], col.length[0]));
for (int rowIndex = 1; rowIndex < rowNumber; ++rowIndex)
dout.addStrCol(cIdx, bs);
} else if(col.noNulls){
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++)
dout.addStrCol(cIdx, bs.set(col.vector[rowIndex], col.start[rowIndex], col.length[rowIndex]));
} else {
boolean [] isNull = col.isNull;
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
if (isNull[rowIndex])
dout.addInvalidCol(cIdx);
else
dout.addStrCol(cIdx, bs.set(col.vector[rowIndex], col.start[rowIndex], col.length[rowIndex]));
}
}
}
/**
* This method writes a column of H2O frame for Orc File column type of float or double.
*
* @param vec
* @param colId
* @param rowNumber
* @param dout
*/
private void writeDoublecolumn(DoubleColumnVector vec, int colId, int rowNumber, ParseWriter dout) {
double[] oneColumn = vec.vector;
byte t = _setup.getColumnTypes()[colId];
switch(t) {
case Vec.T_CAT:
if(_toStringMaps.get(colId) == null)
_toStringMaps.put(colId,new HashMap());
HashMap map = _toStringMaps.get(colId);
BufferedString bs = new BufferedString();
if(vec.isRepeating) {
bs.set(Double.toString(oneColumn[0]).getBytes());
for (int i = 0; i < rowNumber; ++i)
dout.addStrCol(colId, bs);
} else if (vec.noNulls) {
for (int i = 0; i < rowNumber; i++) {
double d = oneColumn[i];
if(map.get(d) == null) // TODO probably more effficient if moved to the data output
map.put(d, Double.toString(d).getBytes());
dout.addStrCol(colId, bs.set(map.get(d)));
}
} else {
for (int i = 0; i < rowNumber; i++) {
boolean [] isNull = vec.isNull;
if (isNull[i])
dout.addInvalidCol(colId);
else {
double d = oneColumn[i];
if(map.get(d) == null)
map.put(d,Double.toString(d).getBytes());
dout.addStrCol(colId, bs.set(map.get(d)));
}
}
}
break;
default:
if(vec.isRepeating) {
for (int i = 0; i < rowNumber; ++i)
dout.addNumCol(colId, oneColumn[0]);
} else if (vec.noNulls) {
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++)
dout.addNumCol(colId, oneColumn[rowIndex]);
} else {
boolean [] isNull = vec.isNull;
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
if (isNull[rowIndex]) dout.addInvalidCol(colId);
else dout.addNumCol(colId, oneColumn[rowIndex]);
}
}
break;
}
}
/**
* This method writes a column of H2O frame for Orc File column type of boolean, bigint, int, smallint,
* tinyint and date.
*
* @param vec
* @param colId
* @param rowNumber
* @param dout
*/
private void writeLongcolumn(LongColumnVector vec, int colId, int rowNumber, ParseWriter dout) {
long[] oneColumn = vec.vector;
byte t = _setup.getColumnTypes()[colId];
switch(t) {
case Vec.T_CAT:
if(_toStringMaps.get(colId) == null)
_toStringMaps.put(colId,new HashMap());
HashMap map = _toStringMaps.get(colId);
BufferedString bs = new BufferedString();
if(vec.isRepeating) {
bs.set(Long.toString(oneColumn[0]).getBytes());
for (int i = 0; i < rowNumber; ++i)
dout.addStrCol(colId, bs);
} else if (vec.noNulls) {
for (int i = 0; i < rowNumber; i++) {
long l = oneColumn[i];
if(map.get(l) == null)
map.put(l,Long.toString(l).getBytes());
dout.addStrCol(colId, bs.set(map.get(l)));
}
} else {
for (int i = 0; i < rowNumber; i++) {
boolean [] isNull = vec.isNull;
if (isNull[i])
dout.addInvalidCol(colId);
else {
long l = oneColumn[i];
if(map.get(l) == null)
map.put(l,Long.toString(l).getBytes());
dout.addStrCol(colId, bs.set(map.get(l)));
}
}
}
break;
default:
if(vec.isRepeating) {
for (int i = 0; i < rowNumber; ++i)
dout.addNumCol(colId, oneColumn[0], 0);
} else if (vec.noNulls) {
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
check_Min_Value(oneColumn[rowIndex], colId, rowNumber, dout);
dout.addNumCol(colId, oneColumn[rowIndex], 0);
}
} else {
for (int rowIndex = 0; rowIndex < rowNumber; rowIndex++) {
boolean [] isNull = vec.isNull;
if (isNull[rowIndex])
dout.addInvalidCol(colId);
else {
check_Min_Value(oneColumn[rowIndex], colId, rowNumber, dout);
dout.addNumCol(colId, oneColumn[rowIndex], 0);
}
}
}
break;
}
}
/**
* This method is written to check and make sure any value written to a column of type long
* is more than Long.MIN_VALUE. If this is not true, a warning will be passed to the user.
*
* @param l
* @param cIdx
* @param rowNumber
* @param dout
*/
private void check_Min_Value(long l, int cIdx, int rowNumber, ParseWriter dout) {
if (l <= Long.MIN_VALUE) {
String warning = "Orc Parser: Long.MIN_VALUE: " + l + " is found in column "+cIdx+" row "+rowNumber +
" of stripe "+_cidx +". This value is used for sentinel and will not be parsed correctly.";
dout.addError(new ParseWriter.ParseErr(warning, _cidx, rowNumber, -2L));
}
}
public static class OrcParseSetup extends ParseSetup {
// expand to include Orc specific fields
transient Reader orcFileReader;
String[] columnTypesString;
boolean[] toInclude;
String[] allColumnNames;
public OrcParseSetup(int ncols,
String[] columnNames,
byte[] ctypes,
String[][] domains,
String[][] naStrings,
String[][] data,
Reader orcReader,
String[] columntypes,
boolean[] toInclude,
String[] allColNames, ParseWriter.ParseErr[] errs) {
super(OrcParserProvider.ORC_INFO, (byte) '|', true, HAS_HEADER ,
ncols, columnNames, ctypes, domains, naStrings, data, errs);
this.orcFileReader = orcReader;
this.columnTypesString = columntypes;
this.toInclude = toInclude;
this.allColumnNames = allColNames;
}
@Override
protected boolean isCompatible(ParseSetup setupB) {
return super.isCompatible(setupB) && Arrays.equals(getColumnTypes(),setupB.getColumnTypes());
}
@Override
protected Parser parser(Key jobKey) {
return new OrcParser(this, jobKey);
}
public Reader getOrcFileReader() {
return this.orcFileReader;
}
public String[] getColumnTypesString() {
return this.columnTypesString;
}
public void setColumnTypeStrings(String[] columnTypeStrings) {
this.columnTypesString = columnTypeStrings;
}
public boolean[] getToInclude() { return this.toInclude; }
public String[] getAllColNames() { return this.allColumnNames; }
public void setAllColNames(String[] columnNames) {
this.allColumnNames = allColumnNames;
}
public void setOrcFileReader(Reader orcFileReader) {
this.orcFileReader = orcFileReader;
this.stripesInfo = orcFileReader.getStripes();
}
private transient List stripesInfo;
public List getStripes() {return stripesInfo;}
}
// types are flattened in pre-order tree walk, here we just count the number of fields for non-primitve types
// which are ignored for now
static private int countStructFields(ObjectInspector x, ArrayList allColumnNames) {
int res = 1;
switch(x.getCategory()) {
case STRUCT:
StructObjectInspector structObjectInspector = (StructObjectInspector) x;
List allColumns = (List) structObjectInspector.getAllStructFieldRefs(); // column info
for (StructField oneField : allColumns) {
allColumnNames.add(oneField.getFieldName());
res += countStructFields(oneField.getFieldObjectInspector(),allColumnNames);
}
break;
case LIST:
ListObjectInspector listObjectInspector = (ListObjectInspector) x;
allColumnNames.add("list");
res += countStructFields(listObjectInspector.getListElementObjectInspector(),allColumnNames);
break;
case MAP:
MapObjectInspector mapObjectInspector = (MapObjectInspector) x;
allColumnNames.add("mapKey");
res += countStructFields(mapObjectInspector.getMapKeyObjectInspector(),allColumnNames);
allColumnNames.add("mapValue");
res += countStructFields(mapObjectInspector.getMapValueObjectInspector(),allColumnNames);
break;
case UNION:
UnionObjectInspector unionObjectInspector = (UnionObjectInspector)x;
allColumnNames.add("union");
for( ObjectInspector xx:unionObjectInspector.getObjectInspectors())
res += countStructFields(xx,allColumnNames);
break;
case PRIMITIVE:break;
default: throw H2O.unimpl();
}
return res;
}
/*
* This function will derive information like column names, types and number from
* the inspector.
*/
static OrcParseSetup deriveParseSetup(Reader orcFileReader, StructObjectInspector insp) {
List allColumns = (List) insp.getAllStructFieldRefs(); // grab column info
List allStripes = orcFileReader.getStripes(); // grab stripe information
ArrayList allColNames = new ArrayList<>();
boolean[] toInclude = new boolean[allColumns.size()+1];
int supportedFieldCnt = 0 ;
int colIdx = 0;
for (StructField oneField:allColumns) {
allColNames.add(oneField.getFieldName());
String columnType = oneField.getFieldObjectInspector().getTypeName();
if (columnType.toLowerCase().contains("decimal")) {
columnType = "decimal";
}
if (isSupportedSchema(columnType)) {
toInclude[colIdx+1] = true;
supportedFieldCnt++;
}
int cnt = countStructFields(oneField.getFieldObjectInspector(),allColNames);
if(cnt > 1)
toInclude = Arrays.copyOf(toInclude,toInclude.length + cnt-1);
colIdx+=cnt;
}
String [] allNames = allColNames.toArray(new String[allColNames.size()]);
String[] names = new String[supportedFieldCnt];
byte[] types = new byte[supportedFieldCnt];
String[][] domains = new String[supportedFieldCnt][];
String[] dataPreview = new String[supportedFieldCnt];
String[] dataTypes = new String[supportedFieldCnt];
ParseWriter.ParseErr[] errs = new ParseWriter.ParseErr[0];
// go through all column information
int columnIndex = 0;
for (StructField oneField : allColumns) {
String columnType = oneField.getFieldObjectInspector().getTypeName();
if (columnType.toLowerCase().contains("decimal"))
columnType = "decimal"; // get rid of strange attachment
if (isSupportedSchema(columnType)) {
names[columnIndex] = oneField.getFieldName();
types[columnIndex] = schemaToColumnType(columnType);
dataTypes[columnIndex] = columnType;
columnIndex++;
} else {
errs = ArrayUtils.append(errs, new ParseWriter.ParseErr("Orc Parser: Skipping field: "
+ oneField.getFieldName() + " because of unsupported type: " + columnType, -1, -1L, -2L));
}
}
// get size of each stripe
long[] stripeSizes = new long[allStripes.size()];
long fileSize = 0L;
long maxStripeSize = 0L;
for (int index = 0; index < allStripes.size(); index++) {
long stripeSize = allStripes.get(index).getDataLength();
if (stripeSize > maxStripeSize)
maxStripeSize = stripeSize;
fileSize = fileSize + stripeSize;
stripeSizes[index] = fileSize;
}
OrcParseSetup ps = new OrcParseSetup(
supportedFieldCnt,
names,
types,
domains,
null,
new String[][] { dataPreview },
orcFileReader,
dataTypes,
toInclude,
allNames,
errs
);
return ps;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy