All Downloads are FREE. Search and download functionalities are using the official Maven repository.

www.flow.help.3_1_3.html Maven / Gradle / Ivy


Some model types, such as DRF, GBM, and Deep Learning, support checkpointing. A checkpoint resumes model training so that you can iterate your model. The dataset must be the same. The following model parameters must be the same when restarting a model from a checkpoint:

Must be the same as in checkpoint model
drop_na20_cols response_column activation
use_all_factor_levels adaptive_rate autoencoder
rho epsilon sparse
sparsity_beta col_major rate
rate_annealing rate_decay momentum_start
momentum_ramp momentum_stable nesterov_accelerated_gradient
ignore_const_cols max_categorical_features nfolds
distribution tweedie_power

The following parameters can be modified when restarting a model from a checkpoint:

Can be modified
seed checkpoint epochs
score_interval train_samples_per_iteration target_ratio_comm_to_comp
score_duty_cycle score_training_samples score_validation_samples
score_validation_sampling classification_stop regression_stop
quiet_mode max_confusion_matrix_size mini_batch_size
diagnostics variable_importances initial_weight_distribution
initial_weight_scale force_load_balance replicate_training_data
shuffle_training_data single_node_mode fast_mode
l1 l2 max_w2
input_dropout_ratio hidden_dropout_ratios loss
overwrite_with_best_model missing_values_handling average_activation
reproducible export_weights_and_biases elastic_averaging
elastic_averaging_moving_rate elastic_averaging_regularization
  1. After building your model, copy the model_id. To view the model_id, click the Model menu then click List All Models.
  2. Select the model type from the drop-down Model menu.

    Note: The model type must be the same as the checkpointed model.

  3. Paste the copied model_id in the checkpoint entry field.
  4. Click the Build Model button. The model will resume training.





© 2015 - 2024 Weber Informatics LLC | Privacy Policy