www.flow.help.3_1_3.html Maven / Gradle / Ivy
Some model types, such as DRF, GBM, and Deep Learning, support checkpointing. A checkpoint resumes model training so that you can iterate your model. The dataset must be the same. The following model parameters must be the same when restarting a model from a checkpoint:
Must be the same as in checkpoint model
drop_na20_cols
response_column
activation
use_all_factor_levels
adaptive_rate
autoencoder
rho
epsilon
sparse
sparsity_beta
col_major
rate
rate_annealing
rate_decay
momentum_start
momentum_ramp
momentum_stable
nesterov_accelerated_gradient
ignore_const_cols
max_categorical_features
nfolds
distribution
tweedie_power
The following parameters can be modified when restarting a model from a checkpoint:
Can be modified
seed
checkpoint
epochs
score_interval
train_samples_per_iteration
target_ratio_comm_to_comp
score_duty_cycle
score_training_samples
score_validation_samples
score_validation_sampling
classification_stop
regression_stop
quiet_mode
max_confusion_matrix_size
mini_batch_size
diagnostics
variable_importances
initial_weight_distribution
initial_weight_scale
force_load_balance
replicate_training_data
shuffle_training_data
single_node_mode
fast_mode
l1
l2
max_w2
input_dropout_ratio
hidden_dropout_ratios
loss
overwrite_with_best_model
missing_values_handling
average_activation
reproducible
export_weights_and_biases
elastic_averaging
elastic_averaging_moving_rate
elastic_averaging_regularization
- After building your model, copy the
model_id
. To view the model_id
, click the Model menu then click List All Models.
- Select the model type from the drop-down Model menu.
Note: The model type must be the same as the checkpointed model.
- Paste the copied
model_id
in the checkpoint entry field.
- Click the Build Model button. The model will resume training.