ai.h2o.sparkling.ml.algos.regression.H2ORegressor.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.algos.regression
import ai.h2o.sparkling.H2OFrame
import ai.h2o.sparkling.ml.algos.H2OAlgoCommonUtils
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.types.DoubleType
private[sparkling] trait H2ORegressor extends H2OAlgoCommonUtils {
def getLabelCol(): String
private def prepareDatasetForRegression(dataset: Dataset[_]): DataFrame = {
val labelColumnName = getLabelCol()
dataset.withColumn(labelColumnName, col(labelColumnName).cast(DoubleType))
}
override private[sparkling] def prepareDatasetForFitting(dataset: Dataset[_]): (H2OFrame, Option[H2OFrame]) = {
super.prepareDatasetForFitting(prepareDatasetForRegression(dataset))
}
}