ai.h2o.sparkling.ml.features.ColumnPruner.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.features
import ai.h2o.sparkling.ml.params.ColumnPrunerParams
import ai.h2o.sparkling.ml.utils.H2OParamsReadable
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param._
import org.apache.spark.ml.util.{DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.types.{StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset}
/**
* Column pruner removes specified columns in the input dataset
*/
class ColumnPruner(override val uid: String) extends Transformer with ColumnPrunerParams with DefaultParamsWritable {
def this() = this(Identifiable.randomUID("columnPruner"))
@DeveloperApi
override def transformSchema(schema: StructType): StructType = {
val columnsToLeft = if (getKeep()) {
schema.fieldNames.filter(getColumns().contains(_))
} else {
schema.fieldNames.filter(!getColumns().contains(_))
}
StructType(columnsToLeft.map { col =>
StructField(col, schema(col).dataType, schema(col).nullable, schema(col).metadata)
})
}
override def transform(dataset: Dataset[_]): DataFrame = {
val columnsToRemove = if (getKeep()) {
dataset.columns.filter(!getColumns().contains(_))
} else {
dataset.columns.filter(getColumns().contains(_))
}
var resultDataset = dataset
columnsToRemove.foreach { col =>
resultDataset = resultDataset.drop(col)
}
resultDataset.toDF()
}
override def copy(extra: ParamMap): Transformer = defaultCopy(extra)
}
object ColumnPruner extends H2OParamsReadable[ColumnPruner]