ai.h2o.sparkling.ml.features.H2OAutoEncoderBase.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.features
import ai.h2o.sparkling.H2OFrame
import ai.h2o.sparkling.ml.models.H2OAutoEncoderMOJOModel
import ai.h2o.sparkling.ml.params.{H2OAutoEncoderExtraParams, HasInputCols}
import hex.Model
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.Dataset
import scala.reflect.ClassTag
abstract class H2OAutoEncoderBase[P <: Model.Parameters: ClassTag]
extends H2OFeatureEstimator[P]
with H2OAutoEncoderExtraParams
with HasInputCols {
override private[sparkling] def getH2OAlgorithmParams(trainingFrame: H2OFrame): Map[String, Any] = {
super.getH2OAlgorithmParams(trainingFrame) ++ Map("autoencoder" -> true)
}
override def fit(dataset: Dataset[_]): H2OAutoEncoderMOJOModel = {
val model = super.fit(dataset).asInstanceOf[H2OAutoEncoderMOJOModel]
copyExtraParams(model)
model
}
private[sparkling] def getWeightCol(): String
override private[sparkling] def getExcludedCols(): Seq[String] = {
super.getExcludedCols() ++ Seq(getWeightCol())
.flatMap(Option(_)) // Remove nulls
}
override protected def createMOJOUID(): String = Identifiable.randomUID("AutoEncoder")
}