Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.algos
import ai.h2o.sparkling.{H2OContext, H2OFrame}
import ai.h2o.sparkling.backend.utils.{RestApiUtils, RestCommunication}
import ai.h2o.sparkling.ml.internals.H2OModel
import ai.h2o.sparkling.ml.models.{H2OBinaryModel, H2OMOJOModel, H2OMOJOSettings}
import ai.h2o.sparkling.ml.params._
import ai.h2o.sparkling.ml.utils.H2OParamsReadable
import ai.h2o.sparkling.utils.ScalaUtils.withResource
import ai.h2o.sparkling.utils.SparkSessionUtils
import com.google.gson.{Gson, JsonElement}
import org.apache.commons.io.IOUtils
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.ml.Estimator
import org.apache.spark.ml.param._
import org.apache.spark.ml.util._
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Dataset, _}
import java.nio.file.Paths
import scala.collection.JavaConverters._
import scala.util.control.NoStackTrace
/**
* H2O AutoML algorithm exposed via Spark ML pipelines.
*/
class H2OAutoML(override val uid: String)
extends Estimator[H2OMOJOModel]
with H2OAlgoCommonUtils
with DefaultParamsWritable
with H2OAutoMLParams
with RestCommunication {
def this() = this(Identifiable.randomUID(classOf[H2OAutoML].getSimpleName))
private var amlKeyOption: Option[String] = None
private var allModels: Option[Array[H2OMOJOModel]] = None
private def getInputSpec(train: H2OFrame, valid: Option[H2OFrame]): Map[String, Any] = {
getH2OAutoMLInputParams(train) ++
Map("training_frame" -> train.frameId) ++
valid.map(fr => Map("validation_frame" -> fr.frameId)).getOrElse(Map())
}
private def getBuildModels(train: H2OFrame): Map[String, Any] = {
val monotoneConstraints = getMonotoneConstraints()
val algoParameters = if (monotoneConstraints != null && monotoneConstraints.nonEmpty) {
Map("monotone_constrains" -> monotoneConstraints)
} else {
Map()
}
val extra = if (algoParameters.nonEmpty) Map("algo_parameters" -> algoParameters) else Map()
// Removing "include_algos", "exclude_algos" from s H2OAutoMLBuildModelsParams since an effective set algorithms
// needs to be calculated and stored into "include_algos". The "exclude_algos" are then reset to null and both
// altered parameters are added to the result.
val essentialParameters = getH2OAutoMLBuildModelsParams(train) - ("include_algos", "exclude_algos")
essentialParameters ++ Map("include_algos" -> determineIncludedAlgos(), "exclude_algos" -> null) ++ extra
}
private def getBuildControl(train: H2OFrame): Map[String, Any] = {
val stoppingCriteria = getH2OAutoMLStoppingCriteriaParams(train)
getH2OAutoMLBuildControlParams(train) + ("stopping_criteria" -> stoppingCriteria)
}
override def fit(dataset: Dataset[_]): H2OMOJOModel = {
amlKeyOption = None
val (train, valid) = prepareDatasetForFitting(dataset)
val inputSpec = getInputSpec(train, valid)
val buildModels = getBuildModels(train)
val buildControl = getBuildControl(train)
val params = Map("input_spec" -> inputSpec, "build_models" -> buildModels, "build_control" -> buildControl)
val autoMLId = trainAndGetDestinationKey(s"/99/AutoMLBuilder", params, encodeParamsAsJson = true)
amlKeyOption = Some(autoMLId)
val algoName = getLeaderboard().select("model_id").head().getString(0)
val leaderModelId = getLeaderModelId(autoMLId)
setAllModels()
if (getKeepBinaryModels()) {
val downloadedModel = downloadBinaryModel(leaderModelId, H2OContext.ensure().getConf)
binaryModel = Some(H2OBinaryModel.read(downloadedModel.toURI.toURL.toString, Some(leaderModelId)))
} else {
deleteBinaryModels()
}
deleteRegisteredH2OFrames()
val models = getAllModels()
models.headOption match {
case Some(model) =>
if (H2OContext.get().forall(_.getConf.isModelPrintAfterTrainingEnabled)) {
println(
s"${models.length} models trained. For more details use the getLeaderboard() method on the AutoML object.")
println("Returning leader model and printing info about it below.")
println(model)
}
model
case None =>
throw new RuntimeException(
"No model has been trained! Try to increase the value of the maxRuntimeSecs parameter and call the method again.")
}
}
private def determineIncludedAlgos(): Array[String] = {
val bothIncludedExcluded = getIncludeAlgos().intersect(Option(getExcludeAlgos()).getOrElse(Array.empty))
bothIncludedExcluded.foreach { algo =>
logWarning(
s"Algorithm '$algo' was specified in both include and exclude parameters. " +
s"Excluding the algorithm.")
}
getIncludeAlgos().diff(bothIncludedExcluded)
}
def getLeaderboard(extraColumns: String*): DataFrame = getLeaderboard(extraColumns.toArray)
def getLeaderboard(extraColumns: java.util.ArrayList[String]): DataFrame = {
getLeaderboard(extraColumns.asScala.toArray)
}
def getLeaderboard(extraColumns: Array[String]): DataFrame = amlKeyOption match {
case Some(amlKey) => getLeaderboard(amlKey, extraColumns)
case None => throw new RuntimeException("The 'fit' method must be called at first!")
}
@DeveloperApi
override def transformSchema(schema: StructType): StructType = {
schema
}
private def getLeaderboard(automlId: String, extraColumns: Array[String] = Array.empty): DataFrame = {
val params = Map("extensions" -> extraColumns)
val conf = H2OContext.ensure().getConf
val endpoint = RestApiUtils.getClusterEndpoint(conf)
val content = withResource(
readURLContent(endpoint, "GET", s"/99/Leaderboards/$automlId", conf, params, encodeParamsAsJson = false, None)) {
response =>
IOUtils.toString(response)
}
val gson = new Gson()
val table = gson.fromJson(content, classOf[JsonElement]).getAsJsonObject.getAsJsonObject("table")
val colNamesIterator = table.getAsJsonArray("columns").iterator().asScala
val colNames = colNamesIterator.toArray.map(_.getAsJsonObject.get("name").getAsString)
val colsData = table.getAsJsonArray("data").iterator().asScala.toArray.map(_.getAsJsonArray)
val numRows = table.get("rowcount").getAsInt
val rows = (0 until numRows).map { idx =>
val rowData = colsData.map { colData =>
val element = colData.get(idx)
if (element.isJsonNull) null else element.getAsString
}
Row(rowData: _*)
}
val spark = SparkSessionUtils.active
val rdd = spark.sparkContext.parallelize(rows)
val schema = StructType(colNames.map(name => StructField(name, StringType, nullable = true)))
spark.createDataFrame(rdd, schema)
}
private def getLeaderModelId(automlId: String): String = {
val leaderBoard = getLeaderboard(automlId).select("model_id")
if (leaderBoard.count() == 0) {
throw new RuntimeException(
"No model returned from H2O AutoML. For example, try to ease" +
" your 'excludeAlgo', 'maxModels' or 'maxRuntimeSecs' properties.") with NoStackTrace
} else {}
leaderBoard.head().getString(0)
}
private def setAllModels(): Unit = {
val models = getLeaderboard().select("model_id").collect().map { row =>
val modelId = row.getString(0)
H2OModel(modelId)
.toMOJOModel(
Identifiable.randomUID(modelId),
H2OMOJOSettings.createFromModelParams(this),
getKeepCrossValidationModels())
}
allModels = Some(models)
}
def getAllModels(): Array[H2OMOJOModel] = allModels match {
case Some(models) => models
case None => throw new RuntimeException("The 'fit' method must be called at first!")
}
private def deleteBinaryModels(): Unit = {
getLeaderboard()
.select("model_id")
.collect()
.partition(_.getString(0).contains("StackedEnsemble"))
.productIterator
.foreach {
case array: Array[Row] =>
array.foreach { row =>
val modelId = row.getString(0)
val model = H2OModel(modelId)
model.tryDelete()
}
}
}
override private[sparkling] def getExcludedCols(): Seq[String] = {
super.getExcludedCols() ++ Seq(getLabelCol(), getFoldCol(), getWeightCol())
.flatMap(Option(_)) // Remove nulls
}
override private[sparkling] def getInputCols(): Array[String] = getFeaturesCols()
override private[sparkling] def setInputCols(value: Array[String]): this.type = setFeaturesCols(value)
override def copy(extra: ParamMap): this.type = defaultCopy(extra)
}
object H2OAutoML extends H2OParamsReadable[H2OAutoML]