ai.h2o.sparkling.ml.algos.H2OAlgoCommonUtils.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.algos
import ai.h2o.sparkling.backend.utils.H2OFrameLifecycle
import ai.h2o.sparkling.ml.models.H2OBinaryModel
import ai.h2o.sparkling.ml.utils.EstimatorCommonUtils
import ai.h2o.sparkling.{H2OContext, H2OFrame}
import org.apache.spark.sql.{Column, DataFrame, Dataset}
import org.apache.spark.sql.functions.col
trait H2OAlgoCommonUtils extends EstimatorCommonUtils with H2OFrameLifecycle {
protected var binaryModel: Option[H2OBinaryModel] = None
def getBinaryModel(): H2OBinaryModel = {
if (binaryModel.isEmpty) {
throw new IllegalArgumentException(
"Algorithm needs to be fit first with the `keepBinaryModels` parameter " +
"set to true in order to access binary model.")
}
binaryModel.get
}
private[sparkling] def getExcludedCols(): Seq[String] = Seq.empty
/** The list of additional columns that needs to be send to H2O-3 backend for model training. */
private[sparkling] def getAdditionalCols(): Seq[String] = Seq.empty
/** The list of additional columns that needs to be send to H2O-3 backend for model validation. */
private[sparkling] def getAdditionalValidationCols(): Seq[String] = Seq.empty
private[sparkling] def getInputCols(): Array[String]
private[sparkling] def getColumnsToCategorical(): Array[String]
/** List of columns to convert to string before modelling. */
private[sparkling] def getColumnsToString(): Array[String] = Array.empty
private[sparkling] def getSplitRatio(): Double
private[sparkling] def setInputCols(value: Array[String]): this.type
private[sparkling] def getValidationDataFrame(): DataFrame
private[sparkling] def prepareDatasetForFitting(dataset: Dataset[_]): (H2OFrame, Option[H2OFrame]) = {
val excludedCols = getExcludedCols()
if (getInputCols().isEmpty) {
val inputs = dataset.columns.filter(c => excludedCols.forall(e => c.compareToIgnoreCase(e) != 0))
setInputCols(inputs)
} else {
val missingColumns = getInputCols()
.filterNot(col => dataset.columns.contains(col))
if (missingColumns.nonEmpty) {
throw new IllegalArgumentException(
"The following feature columns are not available on" +
s" the training dataset: '${missingColumns.mkString(", ")}'")
}
}
val featureColumns = getInputCols().map(sanitize).map(col)
val excludedColumns = excludedCols.map(sanitize).map(col)
val additionalColumns = getAdditionalCols().map(sanitize).map(col)
val columns = (featureColumns ++ excludedColumns ++ additionalColumns).distinct
val h2oContext = H2OContext.ensure(
"H2OContext needs to be created in order to train the model. Please create one as H2OContext.getOrCreate().")
val trainFrame = h2oContext.asH2OFrame(dataset.select(columns: _*).toDF(), getInputCols())
trainFrame.convertColumnsToStrings(getColumnsToString())
// Our MOJO wrapper needs the full column name before the array/vector expansion in order to do predictions
trainFrame.convertColumnsToCategorical(getColumnsToCategorical())
val validationDataFrame = getValidationDataFrame()
val (resultTrainFrame, resultTestFrame) = if (validationDataFrame != null) {
val additionalValidationColumns = getAdditionalValidationCols().map(sanitize).map(col)
val validationColumns = (columns ++ additionalValidationColumns).distinct
val validationFrame = h2oContext.asH2OFrame(validationDataFrame.select(validationColumns: _*))
(trainFrame, Some(validationFrame))
} else if (getSplitRatio() < 1.0) {
val frames = trainFrame.split(getSplitRatio())
if (frames.length > 1) {
(frames(0), Some(frames(1)))
} else {
(frames(0), None)
}
} else {
(trainFrame, None)
}
registerH2OFrameForDeletion(resultTrainFrame)
registerH2OFrameForDeletion(resultTestFrame)
(resultTrainFrame, resultTestFrame)
}
def sanitize(colName: String) = '`' + colName + '`'
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy