ai.h2o.sparkling.ml.algos.H2OSupervisedAlgorithm.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.algos
import ai.h2o.sparkling.ml.models.H2OSupervisedMOJOModel
import ai.h2o.sparkling.{H2OColumnType, H2OFrame}
import hex.Model
import hex.genmodel.utils.DistributionFamily
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.types.StructType
import scala.reflect.ClassTag
abstract class H2OSupervisedAlgorithm[P <: Model.Parameters: ClassTag] extends H2OAlgorithm[P] {
def getLabelCol(): String
def getOffsetCol(): String
def getWeightCol(): String
def setLabelCol(value: String): this.type
def setOffsetCol(value: String): this.type
def setWeightCol(value: String): this.type
@DeveloperApi
override def transformSchema(schema: StructType): StructType = {
val transformedSchema = super.transformSchema(schema)
require(
schema.fields.exists(f => f.name.compareToIgnoreCase(getLabelCol()) == 0),
s"Specified label column '${getLabelCol()} was not found in input dataset!")
require(
!getFeaturesCols().exists(n => n.compareToIgnoreCase(getLabelCol()) == 0),
"Specified input features cannot contain the label column!")
transformedSchema
}
override def fit(dataset: Dataset[_]): H2OSupervisedMOJOModel = {
super.fit(dataset).asInstanceOf[H2OSupervisedMOJOModel]
}
override private[sparkling] def getExcludedCols(): Seq[String] = {
super.getExcludedCols() ++ Seq(getLabelCol(), getWeightCol(), getOffsetCol())
.flatMap(Option(_)) // Remove nulls
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy