ai.h2o.sparkling.ml.features.H2OWord2VecBase.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.features
import ai.h2o.sparkling.ml.models.H2OWord2VecMOJOModel
import ai.h2o.sparkling.ml.params.H2OWord2VecExtraParams
import hex.Model
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions.{col, explode, size, udf}
import scala.reflect.ClassTag
abstract class H2OWord2VecBase[P <: Model.Parameters: ClassTag]
extends H2OFeatureEstimator[P]
with H2OWord2VecExtraParams {
override def fit(dataset: Dataset[_]): H2OWord2VecMOJOModel = {
validate(dataset.schema)
val appendSentenceDelimiter: UserDefinedFunction = udf[Seq[String], Seq[String]](_ :+ "")
val inputCol: String = getInputCol()
val ds = dataset
.filter(col(inputCol).isNotNull)
.filter(size(col(inputCol)) =!= 0)
.withColumn(inputCol, appendSentenceDelimiter(col(inputCol)))
.withColumn(inputCol, explode(col(inputCol)))
.select(inputCol)
if (ds.take(1).isEmpty) {
throw new IllegalArgumentException("Empty DataFrame as an input for the H2OWord2Vec is not supported.")
}
val model = super.fit(ds).asInstanceOf[H2OWord2VecMOJOModel]
copyExtraParams(model)
model
}
override def getColumnsToString(): Array[String] = getInputCols()
private[sparkling] override def getInputCols(): Array[String] = Array(getInputCol())
private[sparkling] override def setInputCols(cols: Array[String]) = {
require(cols.length == 1, "Word2Vec supports only one input column")
setInputCol(cols.head)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy