ai.h2o.sparkling.ml.params.H2OCommonParams.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.params
import org.apache.spark.ml.param._
import org.apache.spark.sql.DataFrame
import scala.collection.JavaConverters._
/**
* This trait contains parameters that are shared across all algorithms.
*/
trait H2OCommonParams extends H2OBaseMOJOParams {
protected final val validationDataFrame = new NonSerializableNullableDataFrameParam(
this,
"validationDataFrame",
"A data frame dedicated for a validation of the trained model. If the parameters is not set," +
"a validation frame created via the 'splitRatio' parameter.")
protected final val splitRatio = new DoubleParam(
this,
"splitRatio",
"Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. " +
"For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.")
protected final val columnsToCategorical =
new StringArrayParam(this, "columnsToCategorical", "List of columns to convert to categorical before modelling")
protected final val keepBinaryModels = new BooleanParam(
this,
"keepBinaryModels",
"If set to true, all binary models created during execution of the ``fit`` method will be kept in DKV of H2O-3 cluster.")
//
// Default values
//
setDefault(
validationDataFrame -> null,
splitRatio -> 1.0, // Use whole frame as training frame
columnsToCategorical -> Array.empty[String],
keepBinaryModels -> false)
//
// Getters
//
def getValidationDataFrame(): DataFrame = $(validationDataFrame)
def getSplitRatio(): Double = $(splitRatio)
def getColumnsToCategorical(): Array[String] = $(columnsToCategorical)
def getKeepBinaryModels(): Boolean = $(keepBinaryModels)
//
// Setters
//
def setValidationDataFrame(dataFrame: DataFrame): this.type = set(validationDataFrame, dataFrame)
def setSplitRatio(ratio: Double): this.type = set(splitRatio, ratio)
def setColumnsToCategorical(first: String, others: String*): this.type =
set(columnsToCategorical, Array(first) ++ others)
def setColumnsToCategorical(columns: Array[String]): this.type = set(columnsToCategorical, columns)
def setColumnsToCategorical(columnNames: java.util.ArrayList[String]): this.type = {
setColumnsToCategorical(columnNames.asScala.toArray)
}
def setConvertUnknownCategoricalLevelsToNa(value: Boolean): this.type =
set(convertUnknownCategoricalLevelsToNa, value)
def setConvertInvalidNumbersToNa(value: Boolean): this.type = set(convertInvalidNumbersToNa, value)
def setKeepBinaryModels(value: Boolean): this.type = set(keepBinaryModels, value)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy