ai.h2o.sparkling.ml.params.H2OPCAParams.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.params
import hex.pca.PCAModel.PCAParameters
import ai.h2o.sparkling.H2OFrame
import hex.DataInfo.TransformType
import hex.pca.PCAModel.PCAParameters.Method
import hex.pca.PCAImplementation
trait H2OPCAParams
extends H2OAlgoParamsBase
with HasIgnoredCols {
protected def paramTag = reflect.classTag[PCAParameters]
//
// Parameter definitions
//
protected val transform = stringParam(
name = "transform",
doc = """Transformation of training data. Possible values are ``"NONE"``, ``"STANDARDIZE"``, ``"NORMALIZE"``, ``"DEMEAN"``, ``"DESCALE"``.""")
protected val pcaMethod = stringParam(
name = "pcaMethod",
doc = """Specify the algorithm to use for computing the principal components: GramSVD - uses a distributed computation of the Gram matrix, followed by a local SVD; Power - computes the SVD using the power iteration method (experimental); Randomized - uses randomized subspace iteration method; GLRM - fits a generalized low-rank model with L2 loss function and no regularization and solves for the SVD using local matrix algebra (experimental). Possible values are ``"GramSVD"``, ``"Power"``, ``"Randomized"``, ``"GLRM"``.""")
protected val pcaImpl = stringParam(
name = "pcaImpl",
doc = """Specify the implementation to use for computing PCA (via SVD or EVD): MTJ_EVD_DENSEMATRIX - eigenvalue decompositions for dense matrix using MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for symmetric matrix using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decompositions for dense matrix using MTJ; JAMA - eigenvalue decompositions for dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/; MTJ - https://github.com/fommil/matrix-toolkits-java/. Possible values are ``"MTJ_EVD_DENSEMATRIX"``, ``"MTJ_EVD_SYMMMATRIX"``, ``"MTJ_SVD_DENSEMATRIX"``, ``"JAMA"``.""")
protected val k = intParam(
name = "k",
doc = """Rank of matrix approximation.""")
protected val maxIterations = intParam(
name = "maxIterations",
doc = """Maximum training iterations.""")
protected val seed = longParam(
name = "seed",
doc = """RNG seed for initialization.""")
protected val useAllFactorLevels = booleanParam(
name = "useAllFactorLevels",
doc = """Whether first factor level is included in each categorical expansion.""")
protected val computeMetrics = booleanParam(
name = "computeMetrics",
doc = """Whether to compute metrics on the training data.""")
protected val imputeMissing = booleanParam(
name = "imputeMissing",
doc = """Whether to impute missing entries with the column mean.""")
protected val modelId = nullableStringParam(
name = "modelId",
doc = """Destination id for this model; auto-generated if not specified.""")
protected val ignoreConstCols = booleanParam(
name = "ignoreConstCols",
doc = """Ignore constant columns.""")
protected val scoreEachIteration = booleanParam(
name = "scoreEachIteration",
doc = """Whether to score during each iteration of model training.""")
protected val maxRuntimeSecs = doubleParam(
name = "maxRuntimeSecs",
doc = """Maximum allowed runtime in seconds for model training. Use 0 to disable.""")
protected val exportCheckpointsDir = nullableStringParam(
name = "exportCheckpointsDir",
doc = """Automatically export generated models to this directory.""")
//
// Default values
//
setDefault(
transform -> TransformType.NONE.name(),
pcaMethod -> Method.GramSVD.name(),
pcaImpl -> PCAImplementation.MTJ_EVD_SYMMMATRIX.name(),
k -> 1,
maxIterations -> 1000,
seed -> -1L,
useAllFactorLevels -> false,
computeMetrics -> true,
imputeMissing -> false,
modelId -> null,
ignoreConstCols -> true,
scoreEachIteration -> false,
maxRuntimeSecs -> 0.0,
exportCheckpointsDir -> null)
//
// Getters
//
def getTransform(): String = $(transform)
def getPcaMethod(): String = $(pcaMethod)
def getPcaImpl(): String = $(pcaImpl)
def getK(): Int = $(k)
def getMaxIterations(): Int = $(maxIterations)
def getSeed(): Long = $(seed)
def getUseAllFactorLevels(): Boolean = $(useAllFactorLevels)
def getComputeMetrics(): Boolean = $(computeMetrics)
def getImputeMissing(): Boolean = $(imputeMissing)
def getModelId(): String = $(modelId)
def getIgnoreConstCols(): Boolean = $(ignoreConstCols)
def getScoreEachIteration(): Boolean = $(scoreEachIteration)
def getMaxRuntimeSecs(): Double = $(maxRuntimeSecs)
def getExportCheckpointsDir(): String = $(exportCheckpointsDir)
//
// Setters
//
def setTransform(value: String): this.type = {
val validated = EnumParamValidator.getValidatedEnumValue[TransformType](value)
set(transform, validated)
}
def setPcaMethod(value: String): this.type = {
val validated = EnumParamValidator.getValidatedEnumValue[Method](value)
set(pcaMethod, validated)
}
def setPcaImpl(value: String): this.type = {
val validated = EnumParamValidator.getValidatedEnumValue[PCAImplementation](value)
set(pcaImpl, validated)
}
def setK(value: Int): this.type = {
set(k, value)
}
def setMaxIterations(value: Int): this.type = {
set(maxIterations, value)
}
def setSeed(value: Long): this.type = {
set(seed, value)
}
def setUseAllFactorLevels(value: Boolean): this.type = {
set(useAllFactorLevels, value)
}
def setComputeMetrics(value: Boolean): this.type = {
set(computeMetrics, value)
}
def setImputeMissing(value: Boolean): this.type = {
set(imputeMissing, value)
}
def setModelId(value: String): this.type = {
set(modelId, value)
}
def setIgnoreConstCols(value: Boolean): this.type = {
set(ignoreConstCols, value)
}
def setScoreEachIteration(value: Boolean): this.type = {
set(scoreEachIteration, value)
}
def setMaxRuntimeSecs(value: Double): this.type = {
set(maxRuntimeSecs, value)
}
def setExportCheckpointsDir(value: String): this.type = {
set(exportCheckpointsDir, value)
}
override private[sparkling] def getH2OAlgorithmParams(trainingFrame: H2OFrame): Map[String, Any] = {
super.getH2OAlgorithmParams(trainingFrame) ++ getH2OPCAParams(trainingFrame)
}
private[sparkling] def getH2OPCAParams(trainingFrame: H2OFrame): Map[String, Any] = {
Map(
"transform" -> getTransform(),
"pca_method" -> getPcaMethod(),
"pca_impl" -> getPcaImpl(),
"k" -> getK(),
"max_iterations" -> getMaxIterations(),
"seed" -> getSeed(),
"use_all_factor_levels" -> getUseAllFactorLevels(),
"compute_metrics" -> getComputeMetrics(),
"impute_missing" -> getImputeMissing(),
"model_id" -> getModelId(),
"ignore_const_cols" -> getIgnoreConstCols(),
"score_each_iteration" -> getScoreEachIteration(),
"max_runtime_secs" -> getMaxRuntimeSecs(),
"export_checkpoints_dir" -> getExportCheckpointsDir()) +++
getIgnoredColsParam(trainingFrame)
}
override private[sparkling] def getSWtoH2OParamNameMap(): Map[String, String] = {
super.getSWtoH2OParamNameMap() ++
Map(
"transform" -> "transform",
"pcaMethod" -> "pca_method",
"pcaImpl" -> "pca_impl",
"k" -> "k",
"maxIterations" -> "max_iterations",
"seed" -> "seed",
"useAllFactorLevels" -> "use_all_factor_levels",
"computeMetrics" -> "compute_metrics",
"imputeMissing" -> "impute_missing",
"modelId" -> "model_id",
"ignoreConstCols" -> "ignore_const_cols",
"scoreEachIteration" -> "score_each_iteration",
"maxRuntimeSecs" -> "max_runtime_secs",
"exportCheckpointsDir" -> "export_checkpoints_dir")
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy