ai.h2o.sparkling.ml.params.HasCalibrationDataFrame.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.params
import ai.h2o.sparkling.{H2OContext, H2OFrame}
import org.apache.spark.sql.DataFrame
import ai.h2o.sparkling.utils.DataFrameSerializationWrappers._
trait HasCalibrationDataFrame extends H2OAlgoParamsBase with HasDataFrameSerializer {
private val calibrationDataFrame = new NullableDataFrameParam(
this,
"calibrationDataFrame",
"Calibration frame for Platt Scaling. " +
"To enable usage of the data frame, set the parameter calibrateModel to True.")
setDefault(calibrationDataFrame -> null)
def getCalibrationDataFrame(): DataFrame = $(calibrationDataFrame)
def setCalibrationDataFrame(value: DataFrame): this.type = set(calibrationDataFrame, toWrapper(value))
private[sparkling] def getCalibrationDataFrameParam(trainingFrame: H2OFrame): Map[String, Any] = {
Map("calibration_frame" -> convertDataFrameToH2OFrameKey(getCalibrationDataFrame()))
}
override private[sparkling] def getSWtoH2OParamNameMap(): Map[String, String] = {
super.getSWtoH2OParamNameMap() ++ Map("calibrationDataFrame" -> "calibration_frame")
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy