ai.h2o.sparkling.ml.params.HasPlugValues.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ai.h2o.sparkling.ml.params
import ai.h2o.sparkling.{H2OContext, H2OFrame}
import ai.h2o.sparkling.backend.utils.SupportedTypes
import ai.h2o.sparkling.utils.SparkSessionUtils
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRow
import org.apache.spark.sql.types._
import scala.collection.JavaConverters._
trait HasPlugValues extends H2OAlgoParamsBase {
private val plugValues = new NullableDictionaryParam[Any](
this,
"plugValues",
"A map containing values that will be used to impute missing values of the training/validation frame, " +
"""use with conjunction missingValuesHandling = "PlugValues")""")
setDefault(plugValues -> null)
def getPlugValues(): Map[String, Any] = {
val values = $(plugValues)
if (values == null) null else values.asScala.toMap
}
def setPlugValues(value: Map[String, Any]): this.type = set(plugValues, if (value == null) null else value.asJava)
private def getPlugValuesFrameKey(): String = {
val plugValues = getPlugValues()
if (plugValues == null) {
null
} else {
val spark = SparkSessionUtils.active
val row = new GenericRow(plugValues.values.toArray)
val rows = Seq[Row](row).asJava
val fields = plugValues.map {
case (key, value) =>
val sparkType = SupportedTypes.simpleByName(value.getClass.getSimpleName).sparkType
StructField(key, sparkType, nullable = false)
}.toArray
val schema = StructType(fields)
val df = spark.createDataFrame(rows, schema)
val hc = H2OContext.ensure(
s"H2OContext needs to be created in order to train the ${this.getClass.getSimpleName} model. " +
"Please create one as H2OContext.getOrCreate().")
val frame = hc.asH2OFrame(df)
val stringFieldsIndices = fields.zipWithIndex.filter(_._1.dataType == StringType).map(_._2)
if (stringFieldsIndices.nonEmpty) {
frame.convertColumnsToCategorical(stringFieldsIndices)
}
registerH2OFrameForDeletion(frame)
frame.frameId
}
}
private[sparkling] def getPlugValuesParam(trainingFrame: H2OFrame): Map[String, Any] = {
Map("plug_values" -> getPlugValuesFrameKey())
}
override private[sparkling] def getSWtoH2OParamNameMap(): Map[String, String] = {
super.getSWtoH2OParamNameMap() ++ Map("plugValues" -> "plug_values")
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy