opennlp.tools.cmdline.languagemodel.NGramLanguageModelTool Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.cmdline.languagemodel;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import opennlp.tools.cmdline.BasicCmdLineTool;
import opennlp.tools.cmdline.CLI;
import opennlp.tools.cmdline.CmdLineUtil;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.cmdline.SystemInputStreamFactory;
import opennlp.tools.languagemodel.NGramLanguageModel;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import opennlp.tools.util.StringList;
/**
* Command line tool for {@link opennlp.tools.languagemodel.NGramLanguageModel}.
*/
public class NGramLanguageModelTool extends BasicCmdLineTool {
@Override
public String getShortDescription() {
return "gives the probability and most probable next token(s) of a sequence of tokens in a " +
"language model";
}
@Override
public void run(String[] args) {
File lmFile = new File(args[0]);
FileInputStream stream = null;
try {
stream = new FileInputStream(lmFile);
NGramLanguageModel nGramLanguageModel = new NGramLanguageModel(stream);
ObjectStream lineStream;
PerformanceMonitor perfMon = null;
try {
lineStream = new PlainTextByLineStream(new SystemInputStreamFactory(),
SystemInputStreamFactory.encoding());
perfMon = new PerformanceMonitor(System.err, "nglm");
perfMon.start();
String line;
while ((line = lineStream.read()) != null) {
double probability;
StringList predicted;
String[] tokens = line.split(" ");
StringList sample = new StringList(tokens);
try {
probability = nGramLanguageModel.calculateProbability(sample);
predicted = nGramLanguageModel.predictNextTokens(sample);
} catch (Exception e) {
System.err.println("Error:" + e.getLocalizedMessage());
System.err.println(line);
continue;
}
System.out.println(sample + " -> prob:" + probability + ", next:" + predicted);
perfMon.incrementCounter();
}
} catch (IOException e) {
CmdLineUtil.handleStdinIoError(e);
}
perfMon.stopAndPrintFinalResult();
} catch (java.io.IOException e) {
System.err.println(e.getLocalizedMessage());
} finally {
if (stream != null) {
try {
stream.close();
} catch (IOException e) {
// do nothing
}
}
}
}
@Override
public String getHelp() {
return "Usage: " + CLI.CMD + " " + getName() + " model";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy