All Downloads are FREE. Search and download functionalities are using the official Maven repository.

opennlp.tools.langdetect.DefaultLanguageDetectorContextGenerator Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package opennlp.tools.langdetect;

import java.util.ArrayList;
import java.util.Collection;

import opennlp.tools.ngram.NGramModel;
import opennlp.tools.util.StringList;
import opennlp.tools.util.normalizer.AggregateCharSequenceNormalizer;
import opennlp.tools.util.normalizer.CharSequenceNormalizer;

/**
 * A context generator for language detector.
 */
public class DefaultLanguageDetectorContextGenerator implements LanguageDetectorContextGenerator {

  protected final int minLength;
  protected final int maxLength;
  protected final CharSequenceNormalizer normalizer;

  /**
   * Creates a customizable @{@link DefaultLanguageDetectorContextGenerator} that computes ngrams from text
   * @param minLength min ngrams chars
   * @param maxLength max ngrams chars
   * @param normalizers zero or more normalizers to
   *                    be applied in to the text before extracting ngrams
   */
  public DefaultLanguageDetectorContextGenerator(int minLength, int maxLength,
                                                 CharSequenceNormalizer... normalizers) {
    this.minLength = minLength;
    this.maxLength = maxLength;

    this.normalizer = new AggregateCharSequenceNormalizer(normalizers);
  }

  /**
   * Generates the context for a document using character ngrams.
   * @param document document to extract context from
   * @return the generated context
   */
  @Override
  public String[] getContext(CharSequence document) {
    Collection context = new ArrayList<>();

    NGramModel model = new NGramModel();
    model.add(normalizer.normalize(document), minLength, maxLength);

    for (StringList tokenList : model) {
      if (tokenList.size() > 0) {
        context.add(tokenList.getToken(0));
      }
    }
    return context.toArray(new String[context.size()]);
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy