opennlp.tools.ml.perceptron.PerceptronModel Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.ml.perceptron;
import opennlp.tools.ml.model.AbstractModel;
import opennlp.tools.ml.model.Context;
import opennlp.tools.ml.model.EvalParameters;
public class PerceptronModel extends AbstractModel {
public PerceptronModel(Context[] params, String[] predLabels, String[] outcomeNames) {
super(params,predLabels,outcomeNames);
modelType = ModelType.Perceptron;
}
public double[] eval(String[] context) {
return eval(context,new double[evalParams.getNumOutcomes()]);
}
public double[] eval(String[] context, float[] values) {
return eval(context,values,new double[evalParams.getNumOutcomes()]);
}
public double[] eval(String[] context, double[] probs) {
return eval(context,null,probs);
}
public double[] eval(String[] context, float[] values,double[] outsums) {
Context[] scontexts = new Context[context.length];
java.util.Arrays.fill(outsums, 0);
for (int i = 0; i < context.length; i++) {
scontexts[i] = pmap.get(context[i]);
}
return eval(scontexts,values,outsums,evalParams,true);
}
public static double[] eval(int[] context, double[] prior, EvalParameters model) {
return eval(context,null,prior,model,true);
}
static double[] eval(int[] context, float[] values, double[] prior, EvalParameters model,
boolean normalize) {
Context[] scontexts = new Context[context.length];
for (int i = 0; i < context.length; i++) {
scontexts[i] = model.getParams()[context[i]];
}
return eval(scontexts, values, prior, model, normalize);
}
static double[] eval(Context[] context, float[] values, double[] prior, EvalParameters model,
boolean normalize) {
Context[] params = model.getParams();
double[] activeParameters;
int[] activeOutcomes;
double value = 1;
for (int ci = 0; ci < context.length; ci++) {
if (context[ci] != null) {
Context predParams = context[ci];
activeOutcomes = predParams.getOutcomes();
activeParameters = predParams.getParameters();
if (values != null) {
value = values[ci];
}
for (int ai = 0; ai < activeOutcomes.length; ai++) {
int oid = activeOutcomes[ai];
prior[oid] += activeParameters[ai] * value;
}
}
}
if (normalize) {
int numOutcomes = model.getNumOutcomes();
double maxPrior = 1;
for (int oid = 0; oid < numOutcomes; oid++) {
if (maxPrior < Math.abs(prior[oid]))
maxPrior = Math.abs(prior[oid]);
}
double normal = 0.0;
for (int oid = 0; oid < numOutcomes; oid++) {
prior[oid] = Math.exp(prior[oid] / maxPrior);
normal += prior[oid];
}
for (int oid = 0; oid < numOutcomes; oid++) {
prior[oid] /= normal;
}
}
return prior;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy