opennlp.tools.namefind.TokenNameFinderCrossValidator Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.namefind;
import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import opennlp.tools.util.FilterObjectStream;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.SequenceCodec;
import opennlp.tools.util.TrainingParameters;
import opennlp.tools.util.eval.CrossValidationPartitioner;
import opennlp.tools.util.eval.FMeasure;
public class TokenNameFinderCrossValidator {
private static class DocumentSample implements Serializable {
private NameSample[] samples;
DocumentSample(NameSample[] samples) {
this.samples = samples;
}
private NameSample[] getSamples() {
return samples;
}
}
/**
* Reads Name Samples to group them as a document based on the clear adaptive data flag.
*/
private static class NameToDocumentSampleStream extends FilterObjectStream {
private NameSample beginSample;
protected NameToDocumentSampleStream(ObjectStream samples) {
super(samples);
}
public DocumentSample read() throws IOException {
List document = new ArrayList<>();
if (beginSample == null) {
// Assume that the clear flag is set
beginSample = samples.read();
}
// Underlying stream is exhausted!
if (beginSample == null) {
return null;
}
document.add(beginSample);
NameSample sample;
while ((sample = samples.read()) != null) {
if (sample.isClearAdaptiveDataSet()) {
beginSample = sample;
break;
}
document.add(sample);
}
// Underlying stream is exhausted,
// next call must return null
if (sample == null) {
beginSample = null;
}
return new DocumentSample(document.toArray(new NameSample[document.size()]));
}
@Override
public void reset() throws IOException, UnsupportedOperationException {
super.reset();
beginSample = null;
}
}
/**
* Splits DocumentSample into NameSamples.
*/
private static class DocumentToNameSampleStream extends FilterObjectStream {
protected DocumentToNameSampleStream(ObjectStream samples) {
super(samples);
}
private Iterator documentSamples = Collections.emptyList().iterator();
public NameSample read() throws IOException {
// Note: Empty document samples should be skipped
if (documentSamples.hasNext()) {
return documentSamples.next();
}
else {
DocumentSample docSample = samples.read();
if (docSample != null) {
documentSamples = Arrays.asList(docSample.getSamples()).iterator();
return read();
}
else {
return null;
}
}
}
}
private final String languageCode;
private final TrainingParameters params;
private final String type;
private byte[] featureGeneratorBytes;
private Map resources;
private TokenNameFinderEvaluationMonitor[] listeners;
private FMeasure fmeasure = new FMeasure();
private TokenNameFinderFactory factory;
private List fmeasures = new LinkedList();
/**
* Name finder cross validator
*
* @param languageCode
* the language of the training data
* @param type
* null or an override type for all types in the training data
* @param trainParams
* machine learning train parameters
* @param featureGeneratorBytes
* descriptor to configure the feature generation or null
* @param listeners
* a list of listeners
* @param resources
* the resources for the name finder or null if none
*/
public TokenNameFinderCrossValidator(String languageCode, String type,
TrainingParameters trainParams, byte[] featureGeneratorBytes,
Map resources, SequenceCodec codec,
TokenNameFinderEvaluationMonitor... listeners) {
this.languageCode = languageCode;
this.type = type;
this.featureGeneratorBytes = featureGeneratorBytes;
this.resources = resources;
this.params = trainParams;
this.listeners = listeners;
}
public TokenNameFinderCrossValidator(String languageCode, String type,
TrainingParameters trainParams, byte[] featureGeneratorBytes,
Map resources,
TokenNameFinderEvaluationMonitor... listeners) {
this(languageCode, type, trainParams, featureGeneratorBytes, resources, new BioCodec(), listeners);
}
public TokenNameFinderCrossValidator(String languageCode, String type,
TrainingParameters trainParams, TokenNameFinderFactory factory,
TokenNameFinderEvaluationMonitor... listeners) {
this.languageCode = languageCode;
this.type = type;
this.params = trainParams;
this.factory = factory;
this.listeners = listeners;
}
/**
* Starts the evaluation.
*
* @param samples
* the data to train and test
* @param nFolds
* number of folds
* @throws IOException
*/
public void evaluate(ObjectStream samples, int nFolds)
throws IOException {
// Note: The name samples need to be grouped on a document basis.
CrossValidationPartitioner partitioner = new CrossValidationPartitioner<>(
new NameToDocumentSampleStream(samples), nFolds);
while (partitioner.hasNext()) {
CrossValidationPartitioner.TrainingSampleStream trainingSampleStream =
partitioner.next();
TokenNameFinderModel model;
if (factory != null) {
model = NameFinderME.train(languageCode, type, new DocumentToNameSampleStream(trainingSampleStream),
params, factory);
}
else {
model = NameFinderME.train(languageCode, type, new DocumentToNameSampleStream(trainingSampleStream),
params, TokenNameFinderFactory.create(null, featureGeneratorBytes, resources, new BioCodec()));
}
// do testing
TokenNameFinderEvaluator evaluator = new TokenNameFinderEvaluator(
new NameFinderME(model), listeners);
evaluator.evaluate(new DocumentToNameSampleStream(trainingSampleStream.getTestSampleStream()));
fmeasure.mergeInto(evaluator.getFMeasure());
fmeasures.add(fmeasure);
}
}
public FMeasure getFMeasure() {
return fmeasure;
}
public List getFMeasures() {
return fmeasures;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy