opennlp.tools.tokenize.TokSpanEventStream Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package opennlp.tools.tokenize;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.regex.Pattern;
import opennlp.tools.ml.model.Event;
import opennlp.tools.tokenize.lang.Factory;
import opennlp.tools.util.AbstractEventStream;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.Span;
/**
* This class reads the {@link TokenSample}s from the given {@link Iterator}
* and converts the {@link TokenSample}s into {@link Event}s which
* can be used by the maxent library for training.
*/
public class TokSpanEventStream extends AbstractEventStream {
private TokenContextGenerator cg;
private boolean skipAlphaNumerics;
private final Pattern alphaNumeric;
/**
* Initializes the current instance.
*
* @param tokenSamples
* @param skipAlphaNumerics
* @param cg
*/
public TokSpanEventStream(ObjectStream tokenSamples,
boolean skipAlphaNumerics, Pattern alphaNumeric, TokenContextGenerator cg) {
super(tokenSamples);
this.alphaNumeric = alphaNumeric;
this.skipAlphaNumerics = skipAlphaNumerics;
this.cg = cg;
}
/**
* Initializes the current instance.
*
* @param tokenSamples
* @param skipAlphaNumerics
* @param cg
*/
public TokSpanEventStream(ObjectStream tokenSamples,
boolean skipAlphaNumerics, TokenContextGenerator cg) {
super(tokenSamples);
Factory factory = new Factory();
this.alphaNumeric = factory.getAlphanumeric(null);
this.skipAlphaNumerics = skipAlphaNumerics;
this.cg = cg;
}
/**
* Initializes the current instance.
*
* @param tokenSamples
* @param skipAlphaNumerics
*/
public TokSpanEventStream(ObjectStream tokenSamples,
boolean skipAlphaNumerics) {
this(tokenSamples, skipAlphaNumerics, new DefaultTokenContextGenerator());
}
/**
* Adds training events to the event stream for each of the specified tokens.
*
* @param tokenSample character offsets into the specified text.
* @return The text of the tokens.
*/
@Override
protected Iterator createEvents(TokenSample tokenSample) {
List events = new ArrayList<>(50);
Span[] tokens = tokenSample.getTokenSpans();
String text = tokenSample.getText();
if (tokens.length > 0) {
int start = tokens[0].getStart();
int end = tokens[tokens.length - 1].getEnd();
String sent = text.substring(start, end);
Span[] candTokens = WhitespaceTokenizer.INSTANCE.tokenizePos(sent);
int firstTrainingToken = -1;
int lastTrainingToken = -1;
for (Span candToken : candTokens) {
Span cSpan = candToken;
String ctok = sent.substring(cSpan.getStart(), cSpan.getEnd());
//adjust cSpan to text offsets
cSpan = new Span(cSpan.getStart() + start, cSpan.getEnd() + start);
//should we skip this token
if (ctok.length() > 1 && (!skipAlphaNumerics || !alphaNumeric.matcher(ctok).matches())) {
//find offsets of annotated tokens inside of candidate tokens
boolean foundTrainingTokens = false;
for (int ti = lastTrainingToken + 1; ti < tokens.length; ti++) {
if (cSpan.contains(tokens[ti])) {
if (!foundTrainingTokens) {
firstTrainingToken = ti;
foundTrainingTokens = true;
}
lastTrainingToken = ti;
}
else if (cSpan.getEnd() < tokens[ti].getEnd()) {
break;
}
else if (tokens[ti].getEnd() < cSpan.getStart()) {
//keep looking
}
else {
System.out.println("Bad training token: " + tokens[ti] + " cand: " + cSpan +
" token=" + text.substring(tokens[ti].getStart(), tokens[ti].getEnd()));
}
}
// create training data
if (foundTrainingTokens) {
for (int ti = firstTrainingToken; ti <= lastTrainingToken; ti++) {
Span tSpan = tokens[ti];
int cStart = cSpan.getStart();
for (int i = tSpan.getStart() + 1; i < tSpan.getEnd(); i++) {
String[] context = cg.getContext(ctok, i - cStart);
events.add(new Event(TokenizerME.NO_SPLIT, context));
}
if (tSpan.getEnd() != cSpan.getEnd()) {
String[] context = cg.getContext(ctok, tSpan.getEnd() - cStart);
events.add(new Event(TokenizerME.SPLIT, context));
}
}
}
}
}
}
return events.iterator();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy