Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
// Copyright 2015-2019 SWIM.AI inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package swim.math;
import swim.codec.Output;
public class MutableTensor extends Tensor {
protected MutableTensor(TensorDims dims, Object array, int offset) {
super(dims, array, offset);
}
public MutableTensor(TensorDims dims, double[] array, int offset) {
super(dims, array, offset);
}
public MutableTensor(TensorDims dims, float[] array, int offset) {
super(dims, array, offset);
}
public MutableTensor(TensorDims dims, double... array) {
super(dims, array);
}
public MutableTensor(TensorDims dims, float... array) {
super(dims, array);
}
@Override
public void debug(Output> output) {
output = output.write("MutableTensor").write('.').write("of").write('(')
.debug(this.dims).write(", ").debug(this.offset);
final Object us = this.array;
if (us instanceof double[]) {
Tensor.debug(output, (double[]) us);
} else if (us instanceof float[]) {
Tensor.debug(output, (float[]) us);
} else {
throw new AssertionError();
}
output = output.write(')');
}
public static MutableTensor zero(TensorDims dims, Precision prec) {
if (prec.isDouble()) {
return new MutableTensor(dims, new double[dims.size * dims.stride]);
} else if (prec.isSingle()) {
return new MutableTensor(dims, new float[dims.size * dims.stride]);
} else {
throw new AssertionError();
}
}
public static MutableTensor zero(TensorDims dims) {
return zero(dims, Precision.f32());
}
public static MutableTensor of(TensorDims dims, int offset, double... array) {
return new MutableTensor(dims, array, offset);
}
public static MutableTensor of(TensorDims dims, int offset, float... array) {
return new MutableTensor(dims, array, offset);
}
}