swim.math.RN Maven / Gradle / Ivy
// Copyright 2015-2019 SWIM.AI inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package swim.math;
import swim.codec.Debug;
import swim.codec.Format;
import swim.codec.Output;
public class RN implements VectorSpace, FN, Debug {
protected final TensorDims dims;
protected RN(TensorDims dims) {
this.dims = dims;
}
@Override
public final R scalar() {
return R.field();
}
@Override
public final TensorDims dimensions() {
return this.dims;
}
@Override
public final int size() {
return this.dims.size;
}
@Override
public VectorRN zero() {
return new VectorRN(new double[this.dims.size]);
}
@Override
public VectorRN of(Object... array) {
final int n = array.length;
if (n != dims.size) {
throw new DimensionException();
}
final double[] us = new double[n];
for (int i = 0; i < n; i += 1) {
us[i] = (Double) array[i];
}
return new VectorRN(us);
}
public VectorRN of(double... array) {
return VectorRN.of(array);
}
@Override
public final Double get(VectorRN v, int i) {
return v.get(i);
}
@Override
public final VectorRN add(VectorRN u, VectorRN v) {
return u.plus(v);
}
@Override
public final VectorRN opposite(VectorRN v) {
return v.opposite();
}
@Override
public final VectorRN subtract(VectorRN u, VectorRN v) {
return u.minus(v);
}
@Override
public final VectorRN multiply(VectorRN u, Double a) {
return u.times(a);
}
@Override
public final VectorRN combine(Double a, VectorRN u, Double b, VectorRN v) {
final double[] us = u.array;
final double[] vs = v.array;
final int n = this.dims.size;
if (us.length != n || vs.length != n) {
throw new DimensionException();
}
final double[] ws = new double[n];
for (int i = 0; i < n; i += 1) {
ws[i] = a * us[i] + b * vs[i];
}
return new VectorRN(ws);
}
@Override
public void debug(Output> output) {
output.write("RN").write('.').write("space").write('(').debug(this.dims).write(')');
}
@Override
public String toString() {
return Format.debug(this);
}
public static RN space(TensorDims dims) {
return new RN(dims);
}
public static RN space(int n) {
return new RN(TensorDims.of(n));
}
}