swim.math.TensorArrayForm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of swim-math Show documentation
Show all versions of swim-math Show documentation
Uploads all artifacts belonging to configuration ':swim-math:archives'
// Copyright 2015-2019 SWIM.AI inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package swim.math;
import java.lang.reflect.Array;
import swim.structure.Item;
import swim.structure.Record;
import swim.structure.Value;
public abstract class TensorArrayForm extends TensorForm {
public abstract TensorForm next();
public abstract T fromArray(Object... array);
public abstract Object[] toArray(T tensor);
protected Object[] newArray(int length) {
return (Object[]) Array.newInstance(next().type(), length);
}
@Override
public String tag() {
return "tensor";
}
@SuppressWarnings("unchecked")
@Override
public Item mold(T tensor) {
if (tensor != null) {
final Object[] us = toArray(tensor);
final Record header = Record.create(us.length);
final TensorForm next = next();
for (int i = 0; i < us.length; i += 1) {
header.item(next.mold((V) us[i]));
}
return Record.create(1).attr(tag(), header);
} else {
return Item.extant();
}
}
@Override
public T cast(Item item) {
final Value header = item.toValue().header(tag());
if (header.isDefined()) {
final int n = header.length();
final Object[] us = newArray(n);
final TensorForm next = next();
for (int i = 0; i < n; i += 1) {
V u = next.cast(header.getItem(i));
if (u == null) {
u = next.unit();
}
us[i] = u;
}
return fromArray(us);
} else {
return null;
}
}
@Override
public T fromTensor(TensorDims vd, float[] vs, int vi) {
final Object[] us = newArray(vd.size);
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
V u = next.fromTensor(vd.next, vs, vi);
if (u == null) {
u = next.unit();
}
us[i] = u;
vi += vd.stride;
}
return fromArray(us);
}
@Override
public T fromTensor(TensorDims vd, double[] vs, int vi) {
final Object[] us = newArray(vd.size);
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
V u = next.fromTensor(vd.next, vs, vi);
if (u == null) {
u = next.unit();
}
us[i] = u;
vi += vd.stride;
}
return fromArray(us);
}
@SuppressWarnings("unchecked")
@Override
public void toTensor(T u, TensorDims vd, float[] vs, int vi) {
final Object[] us = toArray(u);
if (us.length != vd.size) {
throw new DimensionException();
}
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
next.toTensor((V) us[i], vd.next, vs, vi);
vi += vd.stride;
}
}
@SuppressWarnings("unchecked")
@Override
public void toTensor(T u, TensorDims vd, double[] vs, int vi) {
final Object[] us = toArray(u);
if (us.length != vd.size) {
throw new DimensionException();
}
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
next.toTensor((V) us[i], vd.next, vs, vi);
vi += vd.stride;
}
}
@Override
public Item moldTensor(TensorDims vd, float[] vs, int vi) {
final Record header = Record.create(vd.size);
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
header.item(next.moldTensor(vd.next, vs, vi));
vi += vd.stride;
}
return Record.create(1).attr(tag(), header);
}
@Override
public Item moldTensor(TensorDims vd, double[] vs, int vi) {
final Record header = Record.create(vd.size);
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
header.item(next.moldTensor(vd.next, vs, vi));
vi += vd.stride;
}
return Record.create(1).attr(tag(), header);
}
@Override
public void castTensor(Item item, TensorDims vd, float[] vs, int vi) {
final Value header = item.toValue().header(tag());
if (!header.isDefined() || header.length() != vd.size) {
throw new DimensionException();
}
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
next.castTensor(header.getItem(i), vd.next, vs, vi);
vi += vd.stride;
}
}
@Override
public void castTensor(Item item, TensorDims vd, double[] vs, int vi) {
final Value header = item.toValue().header(tag());
if (!header.isDefined() || header.length() != vd.size) {
throw new DimensionException();
}
final TensorForm next = next();
for (int i = 0; i < vd.size; i += 1) {
next.castTensor(header.getItem(i), vd.next, vs, vi);
vi += vd.stride;
}
}
public static TensorArrayForm from(TensorForm next) {
return new TensorArrayIdentityForm(next);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy